• Title/Summary/Keyword: Computational design of experiment

Search Result 240, Processing Time 0.023 seconds

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics (페리다이나믹스를 이용한 균열진전 문제의 구조 최적설계)

  • Kim, Jae-Hyun;Park, Soomin;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Based on a bond-based peridynamics theory for dynamic crack propagation problems, this paper presents a design sensitivity analysis and optimization method. Peridynamics has a peculiar advantage over the existing continuum theory in the mathematical modelling of problems where discontinuities arise. For the design optimization of the crack propagation problems, a non-shape design sensitivity is derived using the adjoint variable method. The obtained adjoint sensitivity of displacement and strain energy turns out to be very accurate and efficient compared to the finite different sensitivity. The obtained design sensitivities are futher utilized to optimally control the position of bifurcation point in the design optimization of crack propagation in a plate under tension. A numerical experiment demonstrates that the optimal distribution of material density could delay the position of bifurcation.

Numerical Studies on the Inducer/Impeller Interaction of a Liquid Rocket Engine Turbopump System (액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구)

  • Choi, Chang-Ho;Cha, Bong Jun;Yang, Soo Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.33-40
    • /
    • 2002
  • The hydraulic performance analysis of a pump system composed of an inducer and impeller for the application on turbopumps has been performed using three-dimensional Wavier-Stokes equations. A simple mixing-plane method and a full interaction method are used to simulate inducer/impeller interactions. The computations adopting two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is rather small. But, because the inducer and the impeller are closely spaced near the shroud region at the interface, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicted about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with experimental ones. The computational results at the design point show good agreements with experimental data. But the computation was found to under-predict the head rise at high mass flow rates compared to the experiment, further study must be followed in terms of the computation and experiment.

  • PDF

Analysis on Green BIM based Atrium Sizes in the Early Design Stage (Green BIM기반 초기설계 단계에서 타입별 아트리움의 규모산정에 관한 연구)

  • Jeong, Seung-Woo;Lee, Kweon-Hyoung;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.58-70
    • /
    • 2013
  • This study for establishing specific standards of atrium design aims to discuss design of atrium to consider energy performance atrium in office buildings. In order to evaluate a type and a scale of atrium at the early design stage, modeling details of mass design were set as standards of conceptual design. In the experiment, Project Vasari was used to analyze modeling and energy consumption, based on the LOD 100-step suggested by AIA, because there is no guideline to specify a level of modeling details at each design process. From this analysis, the correlation among a simple-typed atrium and scale and energy load was considered. The result of this research is as follows: First, the single-sided atrium reduced energy the most, and it was followed by three-sided, two-sided, four-sided and continuous-typed ones. On the whole, they could decrease energy by up to about 15%. Also, the atrium with a wide facade facing in the south was more favorable to reduce energy. Second, planning the atrium within 10~30% of the whole building area was more energy efficient. Third, rather than the depth, adjusting the length in designing an atrium could reduce cooling and heating loads by 1.5% per 1m. As explained above, energy performance evaluation considering types and planning elements of atrium helps to assess alternatives in a reasonable way. In particular, considering the use of building needs to be preceded to select a type of atrium, although it is also important to consider its planning elements.

CFD and surrogates-based inducer optimization

  • Kratky, Tomas;Zavadil, Lukas;Doubrava, Vit
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • Due to the nature of cavitation numerical analyses, computational optimization of a pump with respect to the cavitation properties is extremely demanding. In this paper it is shown how a combination of Transient Blade Row (TBR) method and some simplifications can be used for making the optimization process more efficient and thus possible on current generation of hardware. The aim of the paper is not the theory of hydraulic design. Instead, the practical aspects of numerical optimization are shown. This is done on an example of a radial pump and a combination of ANSYS CFX, ANSYS software tools and custom scripts is used. First, a comparison of TBR and fully-transient simulation is made. Based on the results, the TBR method is chosen and a parametric model assembled. Design of Experiment (DOE) table is computed and the results are used for sensitivity analysis. As the last step, the final design is created and computed as fully-transient. In conclusion, the results are discussed.

A Robust Optimization Method Utilizing the Variance Decomposition Method for Electromagnetic Devices

  • Wang, Shujuan;Li, Qiuyang;Chen, Jinbao
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.385-392
    • /
    • 2014
  • Uncertainties in loads, materials and manufacturing quality must be considered during electromagnetic devices design. This paper presents an effective methodology for robust optimization design based on the variance decomposition in order to keep higher accuracy of the robustness prediction. Sobol' theory is employed to estimate the response variance under some specific tolerance in design variables. Then, an optimal design is obtained by adding a criterion of response variance upon typical optimization problems as a constraint of the optimization. The main contribution of this paper is that the proposed method applies the variance decomposition to obtain a more accurate variance of the response, as well save the computational cost. The performance and robustness of the proposed algorithms are investigated through a numerical experiment with both an analytic function and the TEAM 22 problem.

DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER (열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계)

  • Shin, D.Y.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

The Improvement of Efficiency Performance for Moving Magnet Type Linear Actuator Using the Neural Network and Finite Element Method (신경회로망과 FEM을 이용한 가동 영구자석형 리니어 엑츄에이터의 성능 향상에 관한 연구)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.63-68
    • /
    • 2004
  • This paper presents an approach to optimum design of Moving Magnet Type Linear Oscillatory Actuator(MM-LOA). The Finite Element Method is applied to characteristic parameters for characteristic analysis and in order to reduce modeling time and efforts, the moving model node technique is used. In addition the neural network is used to reduce computational time of analysis according to changing design variable. To confirm the validity of this study, optimum design results are compared with results of analysis procedure that is verified by experiment.

Optimization of the Thin-walled Aluminum Die Casting Die Design by Solidification Simulation (응고 시뮬레이션에 의한 박육 알루미늄 다이캐스팅 금형 방안의 최적화)

  • Kim, Young-Chan;Cho, Se-Weon;Cho, Jae-Ik;Jeong, Chang-Yeol;Kang, Chang-Seog
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.190-194
    • /
    • 2008
  • Thin-walled die casting of aluminum notebook computer housing with less than 1mm thickness was investigated by using computational solidification simulation and actual casting experiment. Three different types of gate design, finger, tangential and split type, were used and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt flowed into the thin-wall cavity uniformly and split type gating system was preferable gating design than tangential type at the point of view of soundness of casting and distortion generated after solidification. Also, solidification simulation agreed well with the actual die-casting and the casting showed no casting defect and distortion.

Study of Finite Element Analysis of Tuned Liquid Damper for Seismic Design of High-Rise Building (고층건물 내진설계용 TLD의 유한요소 해석에 관한 연구)

  • Park Seoung-Woo;Cho Jin-Rae;Lee Jae-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.597-602
    • /
    • 2006
  • Many researches have been studied several vibration control device such as TMD and TLD to reduce the influence of wind or seismic waves for high-rise buildings. TLD provides some advantages such as easy installation and low maintenance cost. However, because of the difficulties in evaluating the characteristics of TLD, the dynamic characteristics of TLD must be investigated by experiment or analysis. In this study, the dynamic response analysis of structure with TLD was carried out to verify the vibration control ability of the proposed TLD for high-rise building with about 60 stories. A real seismic wave was used, and the parameter of interest was chosen by the height of water level in the same shape of water tank. From the numerical results, the responses of structure with water tank were confirmed to be safer than those of structure without water tank.

  • PDF