• Title/Summary/Keyword: Computational Vibration Analysis

Search Result 568, Processing Time 0.023 seconds

Modal Analysis of Steel Box Bridge by Using the Component Mode Synthesis (CMS 방법에 의한 강교량의 동적모드해석)

  • 조병완;박종칠;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.177-184
    • /
    • 1997
  • The Component Mode Synthesis Method for the -vibration analysis can be applied to the large-scaled structures, which have difficulty in modeling because of their intricate shapes and boundary conditions and need much time in computational calculations. This paper uses the Component Mode Synthesis Method to analyze the free vibration for the steel box bridge having the large number of D.O.F as an example of the large structural system. By comparing the CMS method to the other method (FEM), this paper proves the accuracy of the solution in techniques and the efficiency in time.

  • PDF

Computational Vibration Analysis and Evaluation of a Tilt-Rotor Aircraft Considering Equipment Supporting Structures (틸트로터 항공기의 탑재장비 상세 지지구조 형상을 고려한 전산진동해석 및 평가)

  • Kim, Yu-Sung;Kim, Dong-Man;Yang, Jian-Ming;Lee, Jung-Jin;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.24-32
    • /
    • 2007
  • In this study, computational structural vibration analyses of a smart unmanned aerial vehicle (SUAV) with tilt-rotors due to dynamic hub loads have been conducted considering detailed supporting structures of installed equipments. Three-dimensional dynamic finite element model has been constructed for different fuel conditions and tilting angles corresponding to helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis is successfully established. Also, dynamic loads generated by rotating blades and wakes in the transient and forward flight conditions are calculated by unsteady computational fluid dynamics technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations of the vibration sensitive equipments are presented in detail. In addition, vibration characteristics of structures and installed equipments of which safe operation is normally limited by the vibration environment specifications are physically investigated for different flight conditions.

  • PDF

Structural Vibration Analysis of Helicopter Search Light Considering Aerodynamic Buffet Load (공력 Buffet 하증을 고려한 헬리콥터 탐색등의 구조진동해석)

  • Kim, Yo-Han;Kim, Dong-Man;Kim, Dong-Hyun;Choi, Hui-Ju;Park, Yong-Suk;Kim, jong-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.175-179
    • /
    • 2008
  • In this study, computational structural vibration analysis of helicopter search light exposing unsteady buffet load have been conducted using combined advanced numerical methods. Unsteady CFD method based on Navier-Stokes equations is used to predict viscous buffet load due to flow separation effects. Full three-dimensional finite element model is constructed in order to conduct static and structural dynamic analyses of the search light model for two different typical flight speeds. Also, the correct performance of the search light can be physically estimated to examine the actual lighting area considering the effects of structural deformations.

  • PDF

Structural Vibration Analysis of a Helicopter Search Light Considering Aerodynamic Buffet Load (공력 Buffet 하중을 고려한 헬리콥터 탐색등의 구조진동해석)

  • Kim, Yo-Han;Kim, Dong-Man;Kim, Dong-Hyun;Choi, Hui-Ju;Park, Yong-Suk;Kim, Jong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.870-875
    • /
    • 2009
  • In this study, computational structural vibration analysis of helicopter search light exposing unsteady buffet load have been conducted using combined advanced numerical methods. Unsteady CFD method based on Navier-Stokes equations is used to predict viscous buffet load due to flow separation effects. Full three-dimensional finite element model is constructed in order to conduct static and structural dynamic analyses of the search light model for two different typical flight speeds. Also, the correct performance of the search light can be physically estimated to examine the actual lighting area considering the effects of structural deformations.

Flutter Suppression of a 3-DOF Airfoil Using CFD/CSD with Integrated Optimal Control Method (CFD/CSD 및 최적제어기법을 연계한 3-자유도계 에어포일의 플러터 억제)

  • Kim, Dong-Hyun;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.929-929
    • /
    • 2005
  • In this study, computational demonstrations for the flutter suppression are presented for the 3-DOF airfoil system with oscillating flap. Advanced computational methods such as computational fluid dynamics (CFD) and computational structural dynamics (CSD) are used and a simultaneous coupling method has been developed to accurately conduct flutter analyses. In addition, optimal control theory is integrated into the CFD based flutter analysis method to construct the coupled aeroservoelastic analysis system for the airfoil with oscillating flap. For a well-defined typical section model, fundamental unsteady aerodynamics and flutter characteristics are investigated. Finally, to show the effectiveness of flutter control the physical aeroelastic responses are directly compared between the open loop and the closed loop systems.

  • PDF

Vibration and Noise Control of Slab Using the Mass Type Damper (질량형 댐퍼를 이용한 바닥판의 진동 및 소음 저감)

  • Hwang, Jae-Seung;Park, Sung-Chul;Kim, Hong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.597-602
    • /
    • 2007
  • It is proposed to analyze the vibration of slab with MTMD and vibration-induced noise. Substructure synthesis is introduced to develope the interaction between the slab and MTMD which are defined in different space and acoustic power is obtained from the velocity field of slab. Numerical analysis is performed to show that the vibration and noise of slab can be reduced by MTMD. A living room of wall type apartment including the wall and MTMD is modeled and analyzed by FEM program Numerical analysis shows that the vibration and noise control effect is different depending on the location and mass ratio of MTMD. Futhermore, noise is more effectively reduced when the vibration of higher modes of slab are reduced rather than lower modes.

  • PDF

Vibro-acoustic Analysis for Predicting the Noise of HDD (하드디스크 드라이브 소음 예측을 위한 진동 음향 연계 해석)

  • 이상희;고상철;김준태;강성우;한윤식;황태연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.103-108
    • /
    • 2001
  • The structure of hard disk drive(HDD) is excited by dynamic motion of a disk-spindle motor, and it makes sound noise. Therefore, the cover and the base of HDD should be designed to reduce noise and vibration induced by spindle motor. The prediction technique of sound pressure level(SPL) of a given structural shape enables us to design a cover and a base with much less vibration and noise. In this paper, we measured the force of disk-spindle motor and predicted SPL from HDD by computational simulation. To get a SPL of HDD by computational simulation, modal analysis and forced vibration analysis were performed with ANSYS, and sound radiation was computed using SYSNOISE. The calculated results were compared with experimental results and a good agreement was obtained. With this computer simulation procedure and design of experiment(DOE), optimal thickness of noise barrier and damper was calculated.

  • PDF

Computational Mechatronics Analysis to Design High Precision N.C. Machine (공작기계의 정밀도 향상을 위한 전산 메카트로닉스 해석)

  • Kim, Dong-Hyun;Kim, Dong-Man;Park, Kang-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.205-209
    • /
    • 2008
  • In this study, very accurate computational mechatronics method has been developed for typical N.C. machine model applying to manufacturing industry in these days. Computation analysis of high speed machine tools like N.C. machine needs consideration about mechatronical features because the machine shows close interaction between dynamic behavior of the mechanical structure, drives and numerical control. For this, nonlinear structural analysis tools based on FEM are linked numerical control program to control the dynamic behavior. In this study, we studied the dynamic feature of N.C. machine by using SAMCEF as nonlinear computational structural analysis tool and simulink as drivers.

  • PDF

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.