• Title/Summary/Keyword: Computational Numerical Analysis

Search Result 2,972, Processing Time 0.033 seconds

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

A Study on the Flow Changes around Building Construction Area Using a GIS Data (GIS 자료를 활용한 신축 건물 주변 지역의 흐름 변화 연구)

  • Mun, Da-Som;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.879-891
    • /
    • 2018
  • In this study, the effects of urban redevelopment and building construction on the change of the detailed flows around the Pukyong National University (PKNU) campus located in the building-congested area was investigated using a CFD (computational fluid dynamics) model and GIS (geographic information system). For the analysis of the detailed flows before and after the constructions of the buildings around and within the campus, numerical simulations for the 16 inflow directions were performed before and after the construction. We used, as reference wind speeds at the inflow boundaries, the averaged wind speeds observed at the Gwangan light beacon (962) where there is no surrounding obstacle (i.e., building and terrain) acting as friction. We analyzed the area fractions in which wind speeds at z = 2.5 m changed after the construction for 16 inflow directions. The area fractions were relatively large in the east-south-easterly and southerly cases, because of the high-rise buildings constructed at the east and the apartment complex and the Engineering buildings constructed at the south of the PKNU campus. In the case of the easterly of which frequency is highest among the wind directions observed at the Daeyeon AWS (AWS 942) located inside the PKNU campus, the wind-speed change was not significant even after the constructions. It is shown that the building construction has affected the detailed flows around as well as even in the far downwind region of the constructed buildings. Also, it is shown that the GIS and CFD model are useful for analyzing the detailed flows in planning the urban redevelopment and/or building construction.

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Free-vibration and buckling of Mindlin plates using SGN-FEM models and effects of parasitic shear in models performance

  • Leilson J. Araujo;Joao E. Abdalla Filho
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • Free-vibration and buckling analyses of plate problems are investigated with the aid of the strain gradient notation finite element method (SGN-FEM). As SGN-FEM employs physically interpretable polynomials in developing finite elements, parasitic shear sources, which are the cause of shear locking, can be precisely identified and subsequently eliminated. This allows two mutually complementary objectives to be defined in this work, namely, evaluate the efficiency of free-vibration and buckling results provided by corrected models, and study the severity of parasitic shear effects on plate models performance. Parasitic shear are flexural terms erroneously present in shear strain polynomials. It is reviewed here that six parasitic shear terms arise during the formulation of the four-node Mindlin plate element. Two parasitic shear terms have been identified in the in-plane shear strain polynomial while other two have been identified in each of the transverse shear strain polynomials. The element is corrected a-priori, i.e., during development, by simply removing the spurious terms from the shear strain polynomials. The computational implementation of the element in its two versions, namely, containing the parasitic shear terms (PS) and corrected for parasitic shear (SG), allows for assessments of the accuracy of results and of the deleterious effects of parasitic shear in free vibration and buckling analyses. This assessment of the parasitic shear effects is a novelty of this work. Validation of the SG model is done comparing its results with analytical results and results provided by other numerical procedures. Analyses are performed for square plates with different thickness-to-length ratios and boundary conditions. Results for thin plates provided by the PS model do not converge to the correct solutions, which indicates that parasitic shear must be eliminated. That is, analysts should not rely on refinement alone. For thick plates, PS model results can be considered acceptable as deleterious effects are really critical in thin plates. On the other hand, results provided by the SG model converge well for both thin and thick plates. The effectiveness of the SG model is established via high-accuracy results obtained in several examples. It is concluded that corrected SGN-FEM models are efficient alternatives for free-vibration and buckling analysis of Mindlin plate problems, and that precise elimination of parasitic shear is a requirement for sound analyses.

Development of AHP-MAUT Hybrid Model to Enhance Effectiveness of Decision Support System (의사결정지원시스템 AHP의 편의성 개선을 위한 하이브리드 모형의 개발)

  • Bae Deuk Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.421-426
    • /
    • 2024
  • The Analytic Hierarchy Process (AHP) converts people's judgment criteria into objective numerical values using pairwise comparisons. However, the need for an excessive number of pairwise comparisons poses a problem. To mitigate this issue, most existing studies have utilized the process separation approach. The method of process separation devised in this study is a "separation and integration approach," where 1) the standard AHP process is used for evaluating judgment criteria, and 2) the Multi-Attributive Utility Technique (MAUT) is applied for comparing alternatives. This AHP-MAUT Hybrid model was applied to a real analysis case, specifically analyzing the transportation choices of commuters between Bundang and Gangnam Station in Gyeonggi Province. The results showed that the computational process was reduced by 42.03% when applying the Hybrid model compared to using the AHP model alone. Furthermore, the choice results of residents using the Hybrid model were compared with those using the standard AHP. The consistency between the two models' choices was 82.1%, indicating a significant level of consistency. In conclusion, this study contributes by presenting a simpler, more convenient, yet equally effective Hybrid model as a new decision-support system alternative to AHP.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Design of a pilot-scale helium heating system to support the SI cycle (파이롯 규모 SI 공정 시험 설비에서의 헬륨 가열 장치 설계)

  • Jang, Se-Hyun;Choi, Yong-Suk;Lee, Ki-Young;Shin, Young-Joon;Lee, Tae-Hoon;Kim, Jong-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • In this study, researchers performed preliminary design and numerical analysis for a pilot-scale helium heating system intended to support full-scale construction for a sulfur-iodine (SI) cycle. The helium heat exchanger used a liquefied petroleum gas (LPG) combustor. Exhaust gas velocity at the heat exchanger outlet was approximately 40 m/s based on computational thermal and flow analysis. The maximum gas temperature was reached with six baffles in the design; lower gas temperatures were observed with four baffles. The amount of heat transfer was also higher with six baffles. Installation of additional baffles may reduce fuel costs because of the reduced LPG exhausted to the heat exchanger. However, additional baffles may also increase the pressure difference between the exchanger's inlet and outlet. Therefore, it is important to find the optimum number of baffles. Structural analysis, followed by thermal and flow analysis, indicated a 3.86 mm thermal expansion at the middle of the shell and tube type heat exchanger when both ends were supported. Structural analysis conditions included a helium flow rate of 3.729 mol/s and a helium outlet temperature of $910^{\circ}C$. An exhaust gas temperature of $1300^{\circ}C$ and an exhaust gas rate of 52 g/s were confirmed to achieve the helium outlet temperature of $910^{\circ}C$ with an exchanger inlet temperature of $135^{\circ}C$ in an LPG-fueled helium heating system.

Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure (정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화)

  • Lee, Sang-Hoon;Kim, Tae-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.37-50
    • /
    • 2020
  • Information security has become an important issue in the world. Various information and communication technologies, such as the Internet of Things, big data, cloud, and artificial intelligence, are developing, and the need for information security is increasing. Although the necessity of information security is expanding according to the development of information and communication technology, interest in information security investment is insufficient. In general, measuring the effect of information security investment is difficult, so appropriate investment is not being practice, and organizations are decreasing their information security investment. In addition, since the types and specification of information security measures are diverse, it is difficult to compare and evaluate the information security countermeasures objectively, and there is a lack of decision-making methods about information security investment. To develop the organization, policies and decisions related to information security are essential, and measuring the effect of information security investment is necessary. Therefore, this study proposes a method of constructing an investment portfolio for information security measures using game theory and derives an optimal defence probability. Using the two-person game model, the information security manager and the attacker are assumed to be the game players, and the information security countermeasures and information security threats are assumed as the strategy of the players, respectively. A zero-sum game that the sum of the players' payoffs is zero is assumed, and we derive a solution of a mixed strategy game in which a strategy is selected according to probability distribution among strategies. In the real world, there are various types of information security threats exist, so multiple information security measures should be considered to maintain the appropriate information security level of information systems. We assume that the defence ratio of the information security countermeasures is known, and we derive the optimal solution of the mixed strategy game using linear programming. The contributions of this study are as follows. First, we conduct analysis using real performance data of information security measures. Information security managers of organizations can use the methodology suggested in this study to make practical decisions when establishing investment portfolio for information security countermeasures. Second, the investment weight of information security countermeasures is derived. Since we derive the weight of each information security measure, not just whether or not information security measures have been invested, it is easy to construct an information security investment portfolio in a situation where investment decisions need to be made in consideration of a number of information security countermeasures. Finally, it is possible to find the optimal defence probability after constructing an investment portfolio of information security countermeasures. The information security managers of organizations can measure the specific investment effect by drawing out information security countermeasures that fit the organization's information security investment budget. Also, numerical examples are presented and computational results are analyzed. Based on the performance of various information security countermeasures: Firewall, IPS, and Antivirus, data related to information security measures are collected to construct a portfolio of information security countermeasures. The defence ratio of the information security countermeasures is created using a uniform distribution, and a coverage of performance is derived based on the report of each information security countermeasure. According to numerical examples that considered Firewall, IPS, and Antivirus as information security countermeasures, the investment weights of Firewall, IPS, and Antivirus are optimized to 60.74%, 39.26%, and 0%, respectively. The result shows that the defence probability of the organization is maximized to 83.87%. When the methodology and examples of this study are used in practice, information security managers can consider various types of information security measures, and the appropriate investment level of each measure can be reflected in the organization's budget.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.