• Title/Summary/Keyword: Computational Grid Computing

Search Result 131, Processing Time 0.028 seconds

Metacomputing System on Grid Computing for Executing CFD Programs (CFD 프로그램 수행을 위한 그리드 컴퓨팅 기반의 메타컴퓨팅 시스템)

  • Lee, Gun-Woo;Woo, Gyun;Kang, Kyung-Woo;Kwon, Oh-Kyoung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.463-467
    • /
    • 2007
  • CFD(Computational Fluid Dynamics)는 수치 기법(Numerical)과 알고리즘을 사용하여 유체 유동 문제를 풀고 해석하는 것이다. 본 논문에서는 이러한 CFD 분석 프로그램의 효율적인 수행을 위해 분산 환경을 기반으로 하는 메타컴퓨팅(Metacomputing) 시스템에 대해서 기술한다. 실제 CFD 프로그램을 단일 클러스터 시스템에서 수행시켰을 때와 메타컴퓨팅 시스템을 이용하여 수행시켰을 때 소요되는 시간과 결과 파일을 실험을 통하여 비교한다. 그 결과 메타컴퓨팅 시스템을 이용하여 CFD 분석 프로그램을 분산 수행시킨 경우는 그렇지 않은 경우에 소요되는 시간보다 평균 $15.3{\sim}38.5%$ 정도 빨랐고, 동일한 결과를 얻을 수 있음을 확인하였다.

  • PDF

Newton-Krylov Method for Compressible Euler Equations on Unstructured Grids

  • Kim Sungho;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.153-159
    • /
    • 1998
  • The Newton-Krylov method on the unstructured grid flow solver using the cell-centered spatial discretization oi compressible Euler equations is presented. This flow solver uses the reconstructed primitive variables to get the higher order solutions. To get the quadratic convergence of Newton method with this solver, the careful linearization of face flux is performed with the reconstructed flow variables. The GMRES method is used to solve large sparse matrix and to improve the performance ILU preconditioner is adopted and vectorized with level scheduling algorithm. To get the quadratic convergence with the higher order schemes and to reduce the memory storage. the matrix-free implementation and Barth's matrix-vector method are implemented and compared with the traditional matrix-vector method. The convergence and computing times are compared with each other.

  • PDF

STUDY ON HIGH RESOLUTION SCHEMES IN INTERFACE CAPTURING METHODS WITH UNSTRUCTURED GRIDS (비정렬격자계를 사용하는 경계면포착법에서 HR도식에 관한 연구)

  • Kim, J.E.;Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.51-56
    • /
    • 2006
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are applied to two typical test cases of a translation test and a collapsing water column problem for the accurate capturing of fluid interfaces. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method, which is based on the finite-volume technique and fully conservative. The calculated results are found to show that SMART scheme gives the best performance with respect to accuracy and robustness.

  • PDF

Parallel Hybrid Particle-Continuum (DSMC-NS) Flow Simulations Using 3-D Unstructured Mesh

  • Wu J.S.;Lian Y.Y.;Cheng G.;Chen Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a recently proposed parallel hybrid particle-continuum (DSMC-NS) scheme employing 3D unstructured grid for solving steady-state gas flows involving continuum and rarefied regions is described [1]. Substitution of a density-based NS solver to a pressure-based one that greatly enhances the capability of the proposed hybrid scheme and several practical experiences of implementation learned from the development and verifications are highlighted. At the end, we present some simulation results of a realistic RCS nozzle plume, which is considered very challenging using either a continuum or particle solver alone, to demonstrate the capability of the proposed hybrid DSMC-NS method.

  • PDF

SBR-k(Sized-base replacement-k) : File Replacement in Data Grid Environments (SBR-k(Sized-based replacement-k) : 데이터 그리드 환경에서 파일 교체)

  • Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.57-64
    • /
    • 2008
  • The data grid computing provides geographically distributed storage resources to solve computational problems with large-scale data. Unlike cache replacement policies in virtual memory or web-caching replacement, an optimal file replacement policy for data grids is the one of the important problems by the fact that file size is very large. The traditional file replacement policies such as LRU(Least Recently Used), LCB-K(Least Cost Beneficial based on K), EBR(Economic-based cache replacement), LVCT(Least Value-based on Caching Time) have the problem that they have to predict requests or need additional resources to file replacement. To solve theses problems, this paper propose SBR-k(Sized-based replacement-k) that replaces files based on file size. The proposed policy considers file size to reduce the number of files corresponding to a requested file rather than forecasting the uncertain future for replacement. The results of the simulation show that hit ratio was similar when the cache size was small, but the proposed policy was superior to traditional policies when the cache size was large.

A Design of Integrated Scientific Workflow Execution Environment for A Computational Scientific Application (계산 과학 응용을 위한 과학 워크플로우 통합 수행 환경 설계)

  • Kim, Seo-Young;Yoon, Kyoung-A;Kim, Yoon-Hee
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Numerous scientists who are engaged in compute-intensive researches require more computing facilities than before, while the computing resource and techniques are increasingly becoming more advanced. For this reason, many works for e-Science environment have been actively invested and established around the world, but still the scientists look for an intuitive experimental environment, which is guaranteed the improved environmental facilities without additional configurations or installations. In this paper, we present an integrated scientific workflow execution environment for Scientific applications supporting workflow design with high performance computing infrastructure and accessibility for web browser. This portal supports automated consecutive execution of computation jobs in order of the form defined by workflow design tool and execution service concerning characteristics of each job to batch over distributed grid resources. Workflow editor of the portal presents a high-level frontend and easy-to-use interface with monitoring service, which shows the status of workflow execution in real time so that user can check the intermediate data during experiments. Therefore, the scientists can take advantages of the environment to improve the productivity of study based on HTC.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

OPENMP PARALLEL PERFORMANCE OF A CFD CODE ON MULTI-CORE SYSTEMS (멀티코어 시스템에서 쓰레드 수에 따른 CFD 코드의 OpenMP 병렬 성능)

  • Kim, J.K.;Jang, K.J.;Kim, T.Y.;Cho, D.R.;Kim, S.D.;Choi, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • OpenMP is becoming more and more useful as a simple parallel processing paradigm on SMP (Shared Memory Multi-Processors) computing environment with the development of multi-core processors. However, very few data is available publically regarding the OpenMP performance in CFD (Computational Fluid Dynamics). In the present study a CFD test suite is prepared for the performance evaluation of OpenMP on various multi-core systems. The test suite is composed of two-dimensional numerical simulations for inviscid/viscous and reacting/non-reacting flows using three different levels of grid systems. One to five test runs were carried out on various systems from dual-core dual threads to 16-core 32-threads systems by changing the number of threads engaged for each test up to 80. The results exhibit some interesting results and the lessons learned from the tests would be quite helpful for the further use of OpenMP for CFD studies using multi-core processor systems.

Design and Implementation of Service based Virtual Screening System in Grids (그리드에서 서비스 기반 가상 탐색 시스템 설계 및 구현)

  • Lee, Hwa-Min;Chin, Sung-Ho;Lee, Jong-Hyuk;Lee, Dae-Won;Park, Seong-Bin;Yu, Heon-Chang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.237-247
    • /
    • 2008
  • A virtual screening is the process of reducing an unmanageable number of compounds to a limited number of compounds for the target of interest by means of computational techniques such as molecular docking. And it is one of a large-scale scientific application that requires large computing power and data storage capability. Previous applications or softwares for molecular docking such as AutoDock, FlexX, Glide, DOCK, LigandFit, ViSION were developed to be run on a supercomputer, a workstation, or a cluster-computer. However the virtual screening using a supercomputer has a problem that a supercomputer is very expensive and the virtual screening using a workstation or a cluster-computer requires a long execution time. Thus we propose a service-based virtual screening system using Grid computing technology which supports a large data intensive operation. We constructed 3-dimensional chemical molecular database for virtual screening. And we designed a resource broker and a data broker for supporting efficient molecular docking service and proposed various services for virtual screening. We implemented service based virtual screening system with DOCK 5.0 and Globus 3.2 toolkit. Our system can reduce a timeline and cost of drug or new material design.

Transonic Wing Flutter Analysis Using a Parallel Euler Solver (병렬화된 오일러 코드를 이용한 3차원 날개의 천음속 플러터 해석)

  • Kwon, Hyuk-Jun;Park, Soo-Hyung;Kim, Kyung-Seok;Kim, Jong-Yun;Lee, In;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.10-16
    • /
    • 2005
  • In this paper, a three-dimensional Euler aeroelastic analysis program is developed with a second-order staggered algorithm to reduce the lagging errors between the fluid and structural solvers. In the unsteady aerodynamic analysis, a dual-time stepping method based on the diagonalized-ADI algorithm is adopted to improve the time accuracy and a parallelized multi-grid method is used to save the computing time. The aeroelastic analyses of AGARD 445.6 wing model have been performed to verify the Euler aeroelastic analysis code. The analysis results are compared with the experimental data and other computational results. The results show comparatively good correlation when they are compared with other references.