• 제목/요약/키워드: Computational Grid Computing

검색결과 131건 처리시간 0.022초

계산 그리드를 위한 서비스 예측 기반의 작업 스케줄링 모델 (Service Prediction-Based Job Scheduling Model for Computational Grid)

  • 장성호;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.91-100
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes a service prediction-based job scheduling model and present its scheduling algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts the next processing time of each processing component and distributes a job to a processing component with minimum processing time. This paper implements the job scheduling model on the DEVS modeling and simulation environment and evaluates its efficiency and reliability. Empirical results, which are compared to conventional scheduling policies, show the usefulness of service prediction-based job scheduling.

  • PDF

계산 그리드를 위한 서비스 예측 기반의 작업 스케쥴링 모델 (Service Prediction-Based Job Scheduling Model for Computational Grid)

  • 장성호;이종식
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 춘계학술대회 논문집
    • /
    • pp.29-33
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.

  • PDF

그리드 컴퓨팅 환경을 이용할 전산 유체 해석 (Computational Fluid Dynamics on The Grid Computing Environment)

  • 성춘호;조금원;박형우;이상산;김대희;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.71-77
    • /
    • 2002
  • The grid technology is believed to be the next generation research tool for both computational and experimental scientists. With advanced network technologies and middleware, geographically distributed facilities can be tightly connected to provided a huge amount of resources or remote accessibility, In this paper, an overview of grid technology will be introduced with an emphasis in application to computational fluid dynamics. The computational fluid dynamics, which involves solution of partial differential equations, is basically limited by the computing power, With the grid technology, virtually unlimited resources are provided. The schematic structure of middleware and grid environment, as well as some preliminary results are presented.

  • PDF

계산 그리드 컴퓨팅에서의 자원 성능 측정을 통한 그리드 스케줄링 모델 (Grid Scheduling Model with Resource Performance Measurement in Computational Grid Computing)

  • 박다혜;이종식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.87-94
    • /
    • 2006
  • 그리드 컴퓨팅은 지리적으로 분산된 이기종의 자원들을 상호 연결하여 대용량의 컴퓨팅 문제들을 해하기 위해 개발되었다. 그리드 컴퓨팅은 다양한 자원들로 구성되어 있기 때문에 효율적이고 안정적인 작업 처리를 위해서는 자원 스케줄링 모델이 필요하다. 그래서 우리는 각 자원들의 성능을 측정하여 작업을 할당하는 자원 성능 측정 스케줄링 모델을 제안하였다. 우리는 자원 성능 측정 수식을 이용하여 자원들을 평가하였고, DEVS 시뮬레이션 모델링 환경에서 자원 성능 측정 스케줄링 모델을 실험하였다. 그리고 우리는 자원 성능 측정 스케줄링 모델의 효율성을 증명하기 위해 자원 성능 측정 스케줄링 모델의 실험 결과들을 기존 스케줄링 모델들과 비교하였다. 이 실험 결과들은 자원 성능 측정 스케줄링 모델이 자원 관리를 개선하고 안정적인 작업 처리를 보장해 줄 수 있음을 증명해 줄 수 있었다.

  • PDF

정보통신기술과 전산유체역학 (Information Technology and Computational Fluid Dynamics)

  • 조금원;박형우;이상산
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.51-56
    • /
    • 2001
  • As IT(Information Technology) has been developing, an application engineering is advanced so quickly. Especially, CFD field that is influenced greatly by Computing Power is an outstanding example. In this paper, it says a research tendency of the KISTI Supercomputing Center that performs the CFD research based on IT. The representative researches are the National Grid Project, TeraCluster Construction and development and a supporting plan for Supercomputer users' parallelization.

  • PDF

국가 Grid 기본 계획과 국$\cdot$내외 Grid 프로젝트 추진 동향 (Basic Plan of National Grid and Domestic and International Research Tendency)

  • 장행진;박형우;이상산
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.164-173
    • /
    • 2001
  • Advanced countries centered by National Supercomputing Center are inclined to construct Grid Infra and develop key applications in high performance computing field. They are also trying to globalize the Grid project aided by research groups in nations and continents. Computing technology and application development in Grid computing environment become indirect capital of high performance computing and information technology. Therefore, Korean government would like to participate in their Grid construction and application development actively and pursue to Grid project to develop Grid industries such as IT, BT. next five years.

  • PDF

가상화를 이용한 위탁형 그리드 서비스 거래망 모델 (Third Party Grid Service Maketplace Model using Virtualization)

  • 장성호;이종식
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.45-50
    • /
    • 2005
  • Research and development of grid computing ware mainly focused on high performance computing field such as large-scale computing operation. Many companies and organizations concentrated on existing computational grid. However, service grid focusing on enterprise environments has been noticed gradually. Grid service providers of service grid construct diverse and specialized services and provide service resources that have economic feasibility to grid users. But, service resources are geographically dispersed and divided into many classes and have individual owners and management policies. In order to utilize and allocate resources effectively, service grid needs a resource management model that handles and manages heterogeneous resources of service grid. Therefore, this paper presents the third party grid service marketplace model using virtualization to solve problems of grid service resource management. Also, this paper proposes resource dealing mechanism and pricing algorithms applicable for service grid. Empirical results show usefulness and efficiency of the third party grid service marketplace model in comparison with typical economic models for grid resource management such as single auction model and double auction model.

  • PDF

Volume Rendering using Grid Computing for Large-Scale Volume Data

  • Nishihashi, Kunihiko;Higaki, Toru;Okabe, Kenji;Raytchev, Bisser;Tamaki, Toru;Kaneda, Kazufumi
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.111-120
    • /
    • 2010
  • In this paper, we propose a volume rendering method using grid computing for large-scale volume data. Grid computing is attractive because medical institutions and research facilities often have a large number of idle computers. A large-scale volume data is divided into sub-volumes and the sub-volumes are rendered using grid computing. When using grid computing, different computers rarely have the same processor speeds. Thus the return order of results rarely matches the sending order. However order is vital when combining results to create a final image. Job-Scheduling is important in grid computing for volume rendering, so we use an obstacle-flag which changes priorities dynamically to manage sub-volume results. Obstacle-Flags manage visibility of each sub-volume when line of sight from the view point is obscured by other subvolumes. The proposed Dynamic Job-Scheduling based on visibility substantially increases efficiency. Our Dynamic Job-Scheduling method was implemented on our university's campus grid and we conducted comparative experiments, which showed that the proposed method provides significant improvements in efficiency for large-scale volume rendering.

그리드 환경하의 효율적 해석을 위한 작업 분할 기법 연구 (Load Balancing for the Efficient Parallelization in the Grid)

  • 고순흠;정명우;김종암;노오현;이상산
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.63-68
    • /
    • 2003
  • The Grid[1] is a communication service that collaborates dispersed high performance computers so that those can be shared and worked together. So, the Grid enables a researcher to analyze a huge-sized problem which was impossible by using local resources. However, diverse communication speeds among computing resources and heterogeneity of computing resources can reduce parallel efficiency in the Grid, The present paper focuses on the development of an efficient load balancing algorithm suitable for the Grid. Proposed algorithm classifies the whole processors into several groups with relatively faster communication speeds. Computational domain is firstly partitioned to each group and then to the processor level considering the performance of each processor. Developed algorithm is validated in the homogeneous system by comparing the present result with the result of equally partitioned meshes and then applied to the heterogeneous system. Additionally, the present algorithm is expanded to be able to solve the decomposed domains and applied to some problems.

  • PDF