• Title/Summary/Keyword: Computational Geometry Technique

Search Result 105, Processing Time 0.028 seconds

COMPUTATIONAL DETERMINATION OF NEUTRON DOSE EQUIVALENT LEVEL AT THE MAZE ENTRANCE OF A MEDICAL ACCELERATOR FACILITY

  • Kim, Hong-Suk;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • An empirical formula fur the neutron dose equivalent at the maze entrance of medical accelerator treatment rooms was derived on the basis of a Monte Carlo simulation. The simulated neutron dose equivalents around the Varian medical accelerator by the MCNPX code were employed. Two cases of target rotational planes were considered: parallel and perpendicular to maze walls. Most of the maximum neutron dose equivalents at the doorway were found when the target rotational planes were parallel to maze walls and the beams were directed to the inner maze entrances. The neutron dose equivalents at the outer maze entrances were calculated for about 698 medical accelerator facilities which were generated from the geometry configurations of running treatment rooms, based on such gantry rotation that produces the maximum neutron dose at the doorway. The results calculated with the empirical formula in this study were compared with those calculated by the Kersey method for 7 operating facilities. It was found that the maximum disagreement between the calculation of this study and that of the Kersey method was a factor of 8.54 with the value calculated by the Kersey method exceeding that of this study. It was concluded that the kersey method estimated the neutron dose equivalent at the doorway computed by MCNPX more conservatively than this study technique.

A Computational Investigation on Airflow Structures Inside a Ball Bearing at High-Speed Rotation (고속 회전하는 볼베어링 내 공기 유동구조 수치해석 연구)

  • Kim, Dong-Joo;Oh, Il-Suk;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.745-750
    • /
    • 2011
  • In a hope to better understand the flow and convective heat transfer characteristics inside a ball bearing, air flow between the rolling elements and raceways at high speed bearing rotation is numerically investigated using a simplified inner geometry of bearing and a CFD technique. Flow simulation results reveal the pressure distribution of airflow and the shear stress distribution on the ball surface, of which nonuniformity becomes significant with the increasing rotational speed. Also, the local point of maximum shear stress coincides with the stagnation flow area on the surface of rolling elements. A complex pattern of three-dimensional vortex structures is found in the air flow due to the relative motion of bearing elements and three different types of vortex pairs exist around the rotating and orbiting rolling elements.

Boundary Treatment for Axi-symmetric Topography (축대칭 지형에 적합한 경계처리기법)

  • Jung, Tae-Hwa;Shin, Hyun-Jung;Son, Minwoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.505-511
    • /
    • 2013
  • A new boundary treatment technique which can be applied to axi-symmetric topography with inclined bottom was developed. Although the finite element method is good for complex geometry, there is no proper boundary treatment when a boundary is not a vertical section because the water depth at the coastline becomes zero. In this study, we developed a new boundary treatment for inclined bottom using the analytical solution for long wave. To develope a model, the mild-slope equation was used and then, a computational domain is divided into an analytical region and a numerical region. By combining a numerical and an analytical solutions, a complete solution was obtained. The developed solution was validated by comparing with a previous analytical solution.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.

Adaptive time-step control for modal methods to integrate the neutron diffusion equation

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.399-413
    • /
    • 2021
  • The solution of the time-dependent neutron diffusion equation can be approximated using quasi-static methods that factorise the neutronic flux as the product of a time dependent function times a shape function that depends both on space and time. A generalization of this technique is the updated modal method. This strategy assumes that the neutron flux can be decomposed into a sum of amplitudes multiplied by some shape functions. These functions, known as modes, come from the solution of the eigenvalue problems associated with the static neutron diffusion equation that are being updated along the transient. In previous works, the time step used to update the modes is set to a fixed value and this implies the need of using small time-steps to obtain accurate results and, consequently, a high computational cost. In this work, we propose the use of an adaptive control time-step that reduces automatically the time-step when the algorithm detects large errors and increases this value when it is not necessary to use small steps. Several strategies to compute the modes updating time step are proposed and their performance is tested for different transients in benchmark reactors with rectangular and hexagonal geometry.

Development of a CFD Program for Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, Jong-Cheol;An, Hui-Seop;O, Il-Seong;Choe, Jong-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.242-248
    • /
    • 2002
  • It is important to develop new effective technologies to increase the interruption capacity and to reduce the size of a UB(Gas Circuit Breakers). Major design parameters such as nozzle geometries and interrupting chamber dimensions affect the cooling of the arc and the breaking performance. But it is not easy to test real GCB model in practice as in theory. Therefore, a simulation tool based on a computational fluid dynamics(CFD) algorithm has been developed to facilitate an optimization of the interrupter. Special attention has been paid to the supersonic flow phenomena between contacts and the observation of hat-gas flow for estimating the breaking performance. However, there are many difficult problems in calculating the flow characteristics in a GCB such as shock wave and complex geometries, which may be either static or in relative motion. Although a number of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a GCB is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program using CFB-CAD integration technique based on Cartesian cut-cell method, which could reduce researcher's efforts to generate the mesh and achieve the accurate representation of the geometry designed by a CAD tools.

Sampling-based Control of SAR System Mounted on A Simple Manipulator (간단한 기구부와 결합한 공간증강현실 시스템의 샘플 기반 제어 방법)

  • Lee, Ahyun;Lee, Joo-Ho;Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.356-367
    • /
    • 2014
  • A robotic sapatial augmented reality (RSAR) system, which combines robotic components with projector-based AR technique, is unique in its ability to expand the user interaction area by dynamically changing the position and orientation of a projector-camera unit (PCU). For a moving PCU mounted on a conventional robotic device, we can compute its extrinsic parameters using a robot kinematics method assuming a link and joint geometry is available. In a RSAR system based on user-created robot (UCR), however, it is difficult to calibrate or measure the geometric configuration, which limits to apply a conventional kinematics method. In this paper, we propose a data-driven kinematics control method for a UCR-based RSAR system. The proposed method utilized a pre-sampled data set of camera calibration acquired at sufficient instances of kinematics configurations in fixed joint domains. Then, the sampled set is compactly represented as a set of B-spline surfaces. The proposed method have merits in two folds. First, it does not require any kinematics model such as a link length or joint orientation. Secondly, the computation is simple since it just evaluates a several polynomials rather than relying on Jacobian computation. We describe the proposed method and demonstrates the results for an experimental RSAR system with a PCU on a simple pan-tilt arm.

Estimation of wind pressure coefficients on multi-building configurations using data-driven approach

  • Konka, Shruti;Govindray, Shanbhag Rahul;Rajasekharan, Sabareesh Geetha;Rao, Paturu Neelakanteswara
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.127-142
    • /
    • 2021
  • Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF