• Title/Summary/Keyword: Computational Fluids Dynamics

Search Result 316, Processing Time 0.024 seconds

APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD (중첩격자에 대한 이동최소자승법 적용 연구)

  • Lee, K.;Lee, S.;Cho, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Chimera grid methods have been widely used in Computational Fluid Dynamics due to its simplicity in constructing grid systems over complex bodies, and suitability for unsteady flow computations with bodies in relative motion. However, the interpolation procedure for ensuring the continuity of the solution over overlapped regions fails when the so-called orphan cells are present. We have adopted the MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with the orphan cells. MLS is one of the interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

HEAT TRANSFER CHARACTERISTICS IN A FAST PYROLYSIS REACTOR FOR BIOMASS (바이오매스 급속열분해 반응기내 열전달 특성)

  • Choi, Hang-Seok
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • The characteristics of flow and heat transfer in a bubbling fluidized bed are investigated by means of computational fluid dynamics (CFD). To simulate two-phase flow for the gas and solid flows, Eulerian-Eulerian approach is applied. Attention is paid for a heat transfer from the wall to fluidized bed by bubbling motion of the flow. From the result, it is confirmed that heat transfer is promoted by chaotic bubbling motion of the flow by enhancement of mixing among solid particles. In particular, the vortical flow motion around gas bubble plays an important role for the mixing and consequent heat transfer. Discussion is made for the time and space averaged Nusselt number which shows peculiar characteristics corresponding to different flow regimes.

PERFORMANCE ANALYSIS OF THE TURBULENCE MODELS FOR A TURBULENT FLOW IN A TRIANGULAR ROD BUNDLE

  • In W.K;Chun T.H;Myong H.K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.63-66
    • /
    • 2005
  • A computational fluid dynamics(CFD) analysis has been made for fully developed turbulent flow in a triangular bare rod bundle with a pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel. The nonlinear quadratic κ-ε models by Speziale[1] and Myong-Kasagi[2] predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic k-ε models by Shih et al.[3] and Craft et al.[4] showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model by Launder et al.[5} appeared to over predict the turbulence anisotropy in the rod bundle.

DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS (유동해석을 통한 물 분사용 비데 노즐 설계)

  • Choi, Y.S.;Yang, S.S.;Jin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.8-12
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

REVIEW ON OPENFOAM - AN OPEN SOURCE SOFTWARE (Source 공개 코드 OpenFOAM에 대한 리뷰)

  • Park, J.K.;Kang, K.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.46-53
    • /
    • 2010
  • Recently, several open source codes for computational fluid dynamics (CFD) have been introduced and are spreading fast. Our group has chosen the OpenFOAM as a platform to develop our own in-house code. In this brief review, we would like to share the information on the codes and what we have experienced so far. We introduce several features of OpenFOAM, which include the performance compared with commercial packages, estimation for current user population, and our own prospect for future improvement in performance and growth in user population. In addition, we briefly introduce our experience gained in embedding the level set method into the OpenFOAM.

EFFECTS OF TURBULENCE MODEL AND EDDY VISCOSITY IN SHOCK-WAVE / BOUNDARY LAYER INTERACTION (충격파 경계층 상호작용에서 난류모델 및 난류점성의 효과)

  • Jeon, Sang Eon;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.56-65
    • /
    • 2013
  • Two compression ramp problems and an impinging shock problem are computed to investigate influence of turbulence models and eddy viscosity on the shock-wave / boundary layer interaction. A Navier-Stokes boundary layer generation code was applied to the generation of inflow boundary conditions. Computational results are validated well with the experimental data and effects of turbulence models are investigated. It is shown that the behavior of turbulence (eddy) viscosity directly affects both the extent of the separation and shock-wave positions over the separation.

NUMERICAL INVESTIGATION OF UNSTEADY CAVITATING FLOW ON A THREE-DIMENSIONAL TWISTED HYDROFOIL (3차원 비틀어진 날개 주위의 비정상 공동 유동에 대한 수치적 연구)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.37-46
    • /
    • 2011
  • Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. As a verification test of the computational method, non-cavitating and cavitating flows over a modified NACA66 foil section were simulated and validated against existing experimental data. The numerical uncertainties of forces and pressure were evaluated for three levels of mesh resolution. The computed pressure on the foil and the cavity shedding behavior were validated by comparing with existing experimental data. The cavity shedding dynamics by re-entrant jets from the end and sides of the cavity were investigated.

Real-time Flow Animation Techniques Using Computational Fluid Dynamics (전산유체역학을 이용한 실시간 유체 애니메이션 기술)

  • Kang Moon Koo
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 2004
  • With all the recent progresses in computer hardware and software technology, the animation of fluids in real-time is still among the most challenging issues of computer graphics. The fluid animation is carried out in two steps - the physical simulation of fluids immediately followed by the visual rendering. The physical simulation is usually accomplished by numerical methods utilizing the particle dynamics equations as well as the fluid mechanics based on the Navier-Stokes equations. Particle dynamics method is usually fast in calculation, but the resulting fluid motion is conditionally unrealistic. The methods using Navier-Stokes equation, on the contrary, yield lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. This article presents a rapid fluid animation method by using the continuum-based fluid mechanics and the enhanced particle dynamics equations. For real-time rendering, pre-integrated volume rendering technique was employed. The proposed method can create realistic fluid effects that can interact with the viewer in action, to be used in computer games, performances, installation arts, virtual reality and many similar multimedia applications.

  • PDF

Biomedical Engineering Research on Circulatory Disorders

  • Yoo Jung-Yul;Park, Jae-Hyung;Suh Sang-Ho;Shim Eun-Bo;Rhee Kye-Han;Shin, Se-Hyun;Cho, Young-I.;Kim, C. Sean;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Circulatory disease is the number two cause of death next to cancer in Korea, while the cardiovascular disease alone is the number one cause of death in the US. In the present article, some background, current status and future prospects of biomedical engineering esearch on circulatory disorders are discussed in terms of the origin of atherosclerosis, computational fluid dynamics and medical imaging techniques, clinical treatments and fluid dynamics, advances in stents, hemodynamic analysis of artificial heart, and artificial blood. In particular, the importance of close collaboration of medicine and fluids engineering is emphasized.

  • PDF