• Title/Summary/Keyword: Computational Experiment

Search Result 995, Processing Time 0.023 seconds

EFFECTS OF PLACEMENT OF A TORUS PLATE COVER ON AIR FLOW IN A SPINNER EQUIPMENT (원환형 덮개장착이 스피너 장비의 기류에 미치는 영향)

  • Kwak H.S.;Yang J.O.;Lee S.W.;Park S.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.52-58
    • /
    • 2006
  • A numerical investigation is made of air flow in a spinner equipment used for cleanning and drying flat display panels. A unique feature of the spinner under question is the placement of a torus plate cover over the rotating plate. The turbulent flow is driven by rotation of a large disk and suction by the exhaust system connected to vacuum chamber. The flow is modelled as an axisymmetric two-dimensional flow and computation is conducted by using the FLUENT package with a version of k-$\varepsilon$ turbulence model. The required capacity of the exhaust system is assessed numerically. The usefulness of the cover in controlling air flow circulation is examined. A computational trouble shooting is attempted to resolve the problem of panel rising which occurred in real experiment.

2D Computational Analysis of Overtopping Wave Energy Convertor

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.

Evaluations of Representations for the Derivative of Rational $B\{e}zier$ Curve (유리 $B\{e}zier$ 곡선의 미분계산방법의 평가)

  • 김덕수;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.350-354
    • /
    • 1999
  • The problem of the computation of derivatives arises in various applications of rational Bezier curves. These applications sometimes require the computation of derivative on numerous points. Therefore, many researches have dealt with the representation for the computation of derivatives with the small computation error. This paper compares the performances of the representations for the derivative of rational Bezier curves in the performances. The performance is measured as computation requirements at the pre-processing stage and at the computation stage based on the theoretical derivation of computational bound as well as the experimental verification. Based on this measurement, this paper discusses which representation is preferable in different situations.

  • PDF

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF FLOWFIELDS IN MICRONOZZLES (초소형 노즐 유동장에 관한 수치적 연구)

  • Seo, J.H.;Cho, H.G.;Lee, D.H.;Jung, S.C.;Myong, R.S.;Huh, H.I.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Owing to the rapid progress in manufacturing technology of microscale devices, there are active research works in developing microscale propulsion systems. In this study, gas flows in nozzles with size of milli and sub-millimeter are investigated by using a CFD code based on the Navier-Stokes equations. The prediction results were compared with theoretical results of quasi-one-dimensional nozzle flow and experiment data. In general, theoretical values agree very well with the CFD results. However, theoretical values begin to deviate from the CFD and experimental data for relatively small Reynolds numbers and the nozzle shape with rectangular cross section. The primary reason for this discrepancy is due to the existence of the thick boundary layer at the wall in low Reynolds flows.

Elastic Plastic Finite Element Calculation of Standard Fracture Toughness Specimens (표준 파괴인성시험편에 대한 탄소성 유한요소해석)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 1994
  • The purpose of this study is elastic plastic finite element analysis for standard fracture toughness specimens. The principles of elastic-plastic fracture mechanics are shortly summarized and the special requirements for computational tools are derived. Possibilities to model the crack tip singularities are mentioned. The relevant fracture parameters like J-Integral and COD and their correlation are evaluated from elastic plastic finite element calculations of standard fracture toughnes specimens. The size and form of the plastic zone are shown. The comparion between experiment and caculation is discussed as well as the application of the limit load analysis.

  • PDF

Numerical study on the oblique shock wave/vortex interaction (경사충격파와 와류 상호작용에 대한 수치적 연구)

  • Mun, Seong-Mok;Kim, Jong-Am;No, O-Hyeon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics (전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정)

  • Hong, Young-Kil
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

NONLINEAR BEHAVIOR OF A GALLOPING CABLE

  • Oh, Hye-Young
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.169-182
    • /
    • 1996
  • This paper presents the numerical experiment of a dis-cretized loaded cable with periodic forcing. There appeared to be var-ious type of nonlinear oscillations over a wide range of fequencies and amplitudes for the periodic forcing term. The same forcing term can give rise to large or small oscillation by solving initial value problem and observing the solutions after a long time.