• 제목/요약/키워드: Computational Approaches

검색결과 702건 처리시간 0.027초

전역 최적화기법과 파라메트릭 변환함수를 이용한 선형 최적화 (Hull Form Optimization using Parametric Modification Functions and Global Optimization)

  • 김희정;전호환;안남현
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.590-600
    • /
    • 2008
  • This paper concerns the development of a designer friendly hull form parameterization and its coupling with advanced global optimization algorithms. As optimization algorithms, we choose the Partial Swarm Optimization(PSO) recently introduced to solve global optimization problems. Most general-purpose optimization softwares used in industrial applications use gradient-based algorithms, mainly due to their convergence properties and computational efficiency when a relatively few number of variables are considered. However, local optimizers have difficulties with local minima and non-connected feasible regions. Because of the increase of computer power and of the development of efficient Global Optimization (GO) methods, in recent years nongradient-based algorithms have attracted much attention. Furthermore, GO methods provide several advantages over local approaches. In the paper, the derivative-based SQP and the GO approach PSO are compared with their relative performances in solving some typical ship design optimization problem focusing on their effectiveness and efficiency.

Low-Power Channel-Adaptive Reconfigurable 4×4 QRM-MLD MIMO Detector

  • Kurniawan, Iput Heri;Yoon, Ji-Hwan;Kim, Jong-Kook;Park, Jongsun
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.100-111
    • /
    • 2016
  • This paper presents a low-complexity channel-adaptive reconfigurable $4{\times}4$ QR-decomposition and M-algorithm-based maximum likelihood detection (QRM-MLD) multiple-input and multiple-output (MIMO) detector. Two novel design approaches for low-power QRM-MLD hardware are proposed in this work. First, an approximate survivor metric (ASM) generation technique is presented to achieve considerable computational complexity reduction with minor BER degradation. A reconfigurable QRM-MLD MIMO detector (where the M-value represents the number of survival branches in a stage) for dynamically adapting to time-varying channels is also proposed in this work. The proposed reconfigurable QRM-MLD MIMO detector is implemented using a Samsung 65 nm CMOS process. The experimental results show that our ASM-based QRM-MLD MIMO detector shows a maximum throughput of 288 Mbps with a normalized power efficiency of 10.18 Mbps/mW in the case of $4{\times}4$ MIMO with 64-QAM. Under time-varying channel conditions, the proposed reconfigurable MIMO detector also achieves average power savings of up to 35% while maintaining a required BER performance.

Computational electroencephalography analysis for characterizing brain networks

  • Sunwoo, Jun-Sang;Cha, Kwang Su;Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • 제22권2호
    • /
    • pp.82-91
    • /
    • 2020
  • Electroencephalography (EEG) produces time-series data of neural oscillations in the brain, and is one of the most commonly used methods for investigating both normal brain functions and brain disorders. Quantitative EEG analysis enables identification of frequencies and brain activity that are activated or impaired. With studies on the structural and functional networks of the brain, the concept of the brain as a complex network has been fundamental to understand normal brain functions and the pathophysiology of various neurological disorders. Functional connectivity is a measure of neural synchrony in the brain network that refers to the statistical interdependency between neural oscillations over time. In this review, we first discuss the basic methods of EEG analysis, including preprocessing, spectral analysis, and functional-connectivity and graph-theory measures. We then review previous EEG studies of brain network characterization in several neurological disorders, including epilepsy, Alzheimer's disease, dementia with Lewy bodies, and idiopathic rapid eye movement sleep behavior disorder. Identifying the EEG-based network characteristics might improve the understanding of disease processes and aid the development of novel therapeutic approaches for various neurological disorders.

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

스케일러블 그래픽스 알고리즘 (Scalable Graphics Algorithms)

  • 윤성의
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 3부
    • /
    • pp.224-224
    • /
    • 2008
  • Recent advances in model acquisition, computer-aided design, and simulation technologies have resulted in massive databases of complex geometric data occupying multiple gigabytes and even terabytes. In various graphics/geometric applications, the major performance bottleneck is typically in accessing these massive geometric data due to the high complexity of such massive geometric data sets. However, there has been a consistent lower growth rate of data access speed compared to that of computational processing speed. Moreover, recent multi-core architectures aggravate this phenomenon. Therefore, it is expected that the current architecture improvement does not offer the solution to the problem of dealing with ever growing massive geometric data, especially in the case of using commodity hardware. In this tutorial, I will focus on two orthogonal approaches--multi-resolution and cache-coherent layout techniques--to design scalable graphics/geometric algorithms. First, I will discuss multi-resolution techniques that reduce the amount of data necessary for performing geometric methods within an error bound. Second, I will explain cache-coherent layouts that improve the cache utilization of runtime geometric applications. I have applied these two techniques into rendering, collision detection, and iso-surface extractions and, thereby, have been able to achieve significant performance improvement. I will show live demonstrations of view-dependent rendering and collision detection between massive models consisting of tens of millions of triangles on a laptop during the talk.

  • PDF

생물정보학적 접근을 통한 Caenorhabditis elegans 모델시스템의 생체내 RNAi 기능예측 및 비특이적 공동발현억제 현상 분석 (Bioinformatics Approach to Direct Target Prediction for RNAi Function and Non-specific Cosuppression in Caenorhabditis elegans)

  • 김태호;김의용;주현
    • KSBB Journal
    • /
    • 제26권2호
    • /
    • pp.131-138
    • /
    • 2011
  • Some computational approaches are needed for clarifying RNAi sequences, because it takes much time and endeavor that almost of RNAi sequences are verified by experimental data. Incorrectness of RNAi mechanism and other unaware factors in organism system are frequently faced with questions regarding potential use of RNAi as therapeutic applications. Our massive parallelized pair alignment scoring between dsRNA in Genebank and expressed sequence tags (ESTs) in Caenorhabditis elegans Genome Sequencing Projects revealed that this provides a useful tool for the prediction of RNAi induced cosuppression details for practical use. This pair alignment scoring method using high performance computing exhibited some possibility that numerous unwanted gene silencing and cosuppression exist even at high matching scores each other. The classifying the relative higher matching score of them based on GO (Gene Ontology) system could present mapping dsRNA of C. elegans and functional roles in an applied system. Our prediction also exhibited that more than 78% of the predicted co-suppressible genes are located in the ribosomal spot of C. elegans.

간소화된 윈도우 푸리에 위상을 이용한 계층적 접근기반의 3차원 객체 추출 기법 (3D Object Extraction Algorithm Based on Hierarchical Approach Using Reduced Windowed Fourier Phase)

  • 민각;한규필;이기수;하영호
    • 한국통신학회논문지
    • /
    • 제27권8A호
    • /
    • pp.779-785
    • /
    • 2002
  • 본 논문에서는 두 개의 2차원 영상에서 3차원 객체를 효율적으로 추출하기 위해서 위상 기반의 스테레오 정합 알고리즘을 제시한다. 특히, 윈도우 푸리에 위상을 이용하는 기존의 위상 기반 방법들은 기본적으로 다중-해상도 위상 맵을 사용하기 때문에 계층적인 접근 관점에서 좋은 특성을 가지고 있는 반면 높은 계산량을 요구한다. 그러므로 본 논문에서는 다중-해상도 위상 기반전략과 더불어 위상 계산의 중복성을 제거하는 빠른 계층적 접근기반의 3차원 객체 추출 기법을 제안한다. 또한, 정합 성능을 개선시키기 위해 위상 영역에서 형태학적인 정합 알고리즘을 제시한다. 제안된 알고리즘을 실험한 결과 계산량이 대략 8배 정도로 크게 감소되었으며 안정된 결과 값을 획득할 수 있었다.

2차원 원주로부터 발생하는 Aeolian tone의 수치계산 (Numerical Simulation of the Aeolian Tone Generated from Two-dimensional Circular Cylinder)

  • 강호근;노기덕;손영태
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.234-239
    • /
    • 2002
  • Acoustic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=200 are simulated using finite difference lattice Boltzmann method. A third-order-accurate up-wind scheme is used for spartial derivatives, and a second-order-accurate Runge-Kutta scheme is used for time marching. The results show that in capturing very small acoustic pressure fluctuation with same frequency of Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of acoustic sound is presented that acoustic which approaches tire upstream due to Doppler effect in the uniform flow slowly propagates, while that for the downstream quickly propagates. It is also apparent that the size of sound pressure is proportional for central distance $r^{-1/2}$ of the cylinder.

  • PDF

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

유전자 알고리즘을 이용한 확장성 있고 빠른 경로 재탐색 알고리즘 (Fast and Scalable Path Re-routing Algorithm Using A Genetic Algorithm)

  • 이정규;김선호;양지훈
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.157-164
    • /
    • 2011
  • 본 논문은 유전자 알고리즘을 이용해서 동적으로 변하는 네트워크상에서 빠르게 최단 경로를 재탐색할 수 있는 알고리즘을 제안한다. 제안 알고리즘은 다익스트라 알고리즘과 유전자 알고리즘을 통합한 형식의 알고리즘이다. 이 제안 알고리즘은 최초 탐색 시 다익스트라(Dijkstra) 알고리즘을 이용해서 유전자 알고리즘의 초기화 과정을 용이하게 하는 선행자 배열을 정의한다. 그 후 유전자 알고리즘은 적절한 유전 연산자를 통해 동적으로 변하는 트래픽 상황에서 최적의 경로를 재탐색한다. 실험 결과를 통해 제안 알고리즘이 거대한 네트워크 데이터에 대해서 다른 유전자 알고리즘 기반의 최단경로 찾기 알고리즘이나 다익스트라 알고리즘보다 적은 계산시간으로 더 짧은 주행시간의 경로를 제시한다는 것을 보였다.