• Title/Summary/Keyword: Computational AeroAcoustics

Search Result 29, Processing Time 0.021 seconds

DEVELOPMENT OF UNEVEN FAN BY AERO-ACOUSTICS ANALYSIS & OPTIMIZATION METHOD (공력소음해석과 최적화 기법을 통한 비등간격 팬 개발)

  • Kim, J.S.;Kim, H.S.;Hyun, K.T.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Acoustic pressure field around the centrifugal fan is predicted by a aero-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using commercial code, while the acoustic waves generated inside the centrifugal fan and shroud are predicted by solving the far field acoustics analysis. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades with the shroud. Acoustic results is validated by experimental results This paper describes the influence of geometric parameters on the noise generation from the section of blades and shroud. One of the effective ways to reduce BPF noise is optimization method using Genetic Algorithm, which effectively minimize eccentricity, is suggested. New improving design was developed by optimization method.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

THE AERO-ACOUSTIC ANALYSIS FOR EACH PART OF DOUBLE ARM PANTOGRAPH OF HIGH SPEED TRAIN (전산해석을 통한 고속철도 더블암 팬터그래프의 부재별 공력소음특성 연구)

  • Lee, S.A.;Kang, H.M.;Lee, Y.B.;Kim, C.W.;Kim, K.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.61-66
    • /
    • 2015
  • In this study, an aero-acoustic analysis around pantograph of a high speed train is performed. Computational technique and grid system is validated with wind tunnel test result and unsteady acoustic pressure data are used for analyzing noise level of each part of pantograph. FLUENT is used for flow analysis and LES(Large Eddy Simulation) is applied for analyzing turbulent flow. For acoustic analysis, Ffowcs Williams-Hawkings(FW-H) acoustics model is used and it bring the aero-acoustic characteristic of pantograph. As the result, contact strip, knee, substructure of pantograph is confirmed as a main source of aero-acoustic noise and it is dealt in various frequencies. The result is expected to help building improved grid system.

Numerical comparative study on high-fidelity prediction of aerodynamic noise from centrifugal fan system (원심팬 시스템의 공력소음 고신뢰 예측을 위한 수치 비교 연구)

  • Seo-Yoon, Ryu;Minseung, Jung;Younguk, Song;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.713-722
    • /
    • 2022
  • In this paper, the flow performance and aero-acoustic noise generated by the target centrifugal fan system were investigated numerically and experimentally. Also, the numerical method for Computational Aero-Acoustics were evaluated by comparing each method. To analyze the performance of the centrifugal fan experimentally, the acoustic power level was measured in the semi-anechoic chamber using microphones, and the active frequency range for the noise performance was identified and that frequency range was applied for Computational Aero-Acoustics (CAA) techniques as sampling frequency. Then, Navier-Stokes equation and the Ffowcs Williams&Hawking equations were used to analyze the flow and sound power numerically, respectively, and a virtual acoustic radiation plane was designed and used for the implementation of the sound field. The accuracy and numerical characteristics of the numerical methods were validated by comparing simulated acoustic power levels with acoustic power levels measured.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTIC BY BOUNDARY CONDITIONS (경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.75-80
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by several boundary conditions. In this simulation, a high-order and high-resolution numerical schemes are used for the accurate computation of compressible flow with several boundary conditions including characteristic boundary conditions as well as extrapolation and zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated with measurement datum and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. Secondary frequency is predicted by three kinds of boundary conditions characteristic.

  • PDF

Numerical Investigation on Radiation Characteristics of Noise Propagating through Asymmetry Aero-Intake (비대칭 공기흡입구를 통해 전파하는 소음의 방사특성에 관한 수치적 연구)

  • Park, Yong-Hwan;Kim, Min-Woo;Lee, Kyu-Ho;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1476-1481
    • /
    • 2007
  • Numerical investigation on radiation characteristics of discrete frequency noise from asymmetry aero-intakes was carried out. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high order finite difference scheme, non-reflecting boundary conditions, oversetgrid techniques. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that noise reduction at downward peak radiation angle can be achieved. The scattering of the radiating acoustic wave by background mean flow shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect.

  • PDF

Introduction to the Computational AeroAcoustics and Its Applications (전산공력음향학(CAA) 소개 및 응용사례)

  • Lee Duck-Joo;Shim In-Bo;Heo Dae-Nyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.1-13
    • /
    • 2000
  • This paper presents a review of the methodology, problems and progress in computational aeroacoustics(CAA). The nature, characteristics, and objectives of aeroacoustics problems are quite different from the commonly encountered CFD problems. In this paper, computational methods that are designed especially for CAA applications are introduced. The potential offered by CAA, the numerical issues which need to be given careful attention, and some of the recent progress in solving aeroacoustic problem are discussed

  • PDF

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

Aeroacoustic Computation of Cavity Flow in Self-Sustained Oscillations

  • Koh, Sung-Ryong;Yong Cho;Young J. Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.590-598
    • /
    • 2003
  • A computational aero-acoustic (CAA) method is used to predict the tonal noise generated from a cavity of automobile door seals or gaps at low flow Mach numbers (A$\_$$\infty$/=0.077 and 0.147) In the present method, the acoustically perturbed Euler equations are solved with the acoustic source term obtained from the unsteady incompressible Navier-Stokes calculations of the cavity flow in self-sustained oscillations. The aerodynamic and acoustic fields are computed for the Reynolds numbers based on the displacement thickness, Re$\_$$\delta$*/=850 and 1620 and their fundamental mode characteristics are investigated. The present method is also verified with the experimentally measured sound pressure level (SPL) spectra.