• Title/Summary/Keyword: Computation fluid dynamic

Search Result 56, Processing Time 0.025 seconds

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

A Study on the Comparison of wind pressure on the member of Container Crane using Wind tunnel test and CFD

  • An, Tae-Won;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.321-325
    • /
    • 2006
  • Because strong wind is one of the few forces that, although considered in container crane design, still cause significant damage, a container crane was tested to investigate wind load characteristic in uniform flows. So, this study measured an external point pressure at the each members of a container crane according to a wind direction and a shape of members in a wind-tunnel test. The result of this test was compared to those of computation fluid dynamics using a CFX 10. The scale of a container crane model for wind tunnel test applied similarity scales to consider the size of the wind tunnel test section and the boundary condition for CFD is like wind tunnel test.

  • PDF

Pre-Analysis CFD Simulation of Air Path Design for Soundproof Photovoltaic-Thermal Wall (방음벽 PVT의 공기유로 설계를 위한 CFD 시뮬레이션 사전 분석 연구)

  • Kim, Yu-Jin;Kim, Ki-Bong;Lee, Euy-Joon;Kang, Eun-Chul
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • The Korean government announced various energy policies, such as the to reduce 37% of the business-as-usual (BAU) greenhouse gas emissions by 2030. The policies aim to increase the renewable electricity generation ratio to 20% by 2030. PVT is a hybrid technology, which combines photovoltaic (PV) and solar collectors. It is capable of generating electricity and thermal energy simultaneously. It has a great potential to be used as a renewable and clean solar energy. However, there exists a shortage of space for the installation of PVT systems in Korea. To overcome this, in this paper proposes four types of soundproof wall PVT air channels, which were designed and optimized, based on the CFD (Computation Fluid Dynamic) analysis results. The thermal energy generation for multiple PVT units connected in series and pressure drop sensitivity were analyzed, depending on inlet velocity.

Design of a micro fluid actuator driven by electromagnetic force (전자기력을 이용한 마이크로 유체구동기의 설계)

  • Kim D.H.;Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1988-1991
    • /
    • 2005
  • A micro fluid actuator driven by electromagnetic force at MEMS(Micro Electro Mechanical System) level has been designed. The operation of the actuator was simulated in three steps. First, fluid flow analysis has been performed to determine the actuator load. With the load, dynamic behavior of the actuator structure has been analysed. Finally, fluid-structure interaction analysis has been performed to predict the performance of the actuator. To avoid excessive amount of computation, axisymmetric and plane strain 2-D models were used.

  • PDF

Unsteady Flow Computation of a ]Rapidly Deploying Spoiler (빠르게 전개되는 스포일러의 비정상 유동해석)

  • Choi S. W.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.127-139
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a rapidly deploying spoiler is numerically investigated using a two-dimensional turbulent compressible Navier-Stokes flow model. The spoiler moving relative to a stationary airfoil is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed first..in this paper. The fluid-dynamic mechanism of the adverse lift due to the rapidly deploying spoiler is analyzed. Also the effect of spoiler deploying rate on the initial behavior of the aerodynamic response is expounded, which is of interest in view of active control technology and controller design for the spoiler. The results of present computation about the stationary as well as moving spoilers are relatively in good agreement with the existing experimental data.

  • PDF

TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL (리어제트 항공기 날개의 천음속 공탄성해석)

  • Tran, T.T.;Kim, D.H.;Kim, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Heat Transfer Analysis of a Linear Motor for Chip Mounter Applications (칩 마운터용 리니어 모터의 열전달 해석)

  • Jang, Chang-Soo;Kim, Jong-Young;Kim, Yung-Joon;Oh, Jung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.396-401
    • /
    • 2001
  • Heat transfer analysis of a iron core type linear motor for surface mounting device applications was considered in this study. In order to avoid the complex conjugate problem a fluid flow regime and a solid regime were considered separately. First, film coefficients of the moving parts were evaluated from computational fluid dynamic analysis and those of the stationary parts from the existing empirical or analytic correlations. And then, by applying them, internal and external temperatures of the linear motor pal1s were computed through finite element analysis. Both computation and measurement were carried out with respect to motor driving power. The measurement did not exhibit a linear temperature variation trend with respect to motor power while the computation revealed a linear correlation. Nonetheless, the computations agreed with the measurements within an error range of 20%. It indicates that an adequate heat transfer model for the reciprocative coil assembly may help more exact prediction.

  • PDF

Fluid Dynamic & Cavity Noise by Turbulence Model of the FDLBM with Subgrid Model (차분래티스 Subgrid모델의 난류모델을 이용한 유동현상 및 Cavity Noise 계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Kang, Myeong-Hoon;Kim, You-Taek;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1149-1154
    • /
    • 2005
  • The finite difference lattice Boltzmann method(FDLBM) is a quite recent approach for simulating fluid flow, which has been proven as a valid and efficient tool in a variety of complex flow problems. It is considered an attractive alternative to conventional FDM and FVM, because it recovers the Navier-Stokes equations and is computationally more stable, and easily parallelizable to simulate for various laminar flows and a direct simulation of aerodynamics sounds. However, the research of a numerical simulation of turbulent flow by FDLBM, which is important to analyze the structure of turbulent flow in engineering fields, is not carried out. In this research, the FDLBM built in the turbulent model is applied, and a flowfield around 2-dimensional square to validate the applied model with 2D9V is simulated. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

  • PDF