• Title/Summary/Keyword: Computation Migration

Search Result 25, Processing Time 0.02 seconds

Load Balancing of Heterogeneous Workstation Cluster based on Relative Load Index (상대적 부하 색인을 기반으로 한 이기종 워크스테이션 클러스터의 부하 균형)

  • Ji, Byoung-Jun;Lee, Kwang-Mo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.183-194
    • /
    • 2002
  • The clustering environment with heterogeneous workstations provides the cost effectiveness and usability for executing applications in parallel. Load balancing is considered a necessary feature for a cluster of heterogeneous workstations to minimize the turnaround time. Previously, static load balancing that assigns a predetermined weight for the processing capability of each workstation, or dynamic approaches which execute a benchmark program to get relative processing capability of each workstation were proposed. The execution of the benchmark program, which has nothing to do with the application being executed, consumes the computation time and the overall turnaround time is delayed. In this paper, we present efficient methods for task distribution and task migration, based on the relative load index. We designed and implemented a load balancing system for the clustering environment with heterogeneous workstations. Turnaround times of our methods and the round-robin approach, as well as the load balancing method using a benchmark program, were compared. The experimental results show that our methods outperform all the other methods that we compared.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems (배전계통 최적 재구성 문제에 PC 클러스터 시스템을 이용한 병렬 유전 알고리즘-타부 탐색법 구현)

  • Mun Kyeong-Jun;Song Myoung-Kee;Kim Hyung-Su;Kim Chul-Hong;Park June Ho;Lee Hwa-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.556-564
    • /
    • 2004
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.