• Title/Summary/Keyword: Compressive wave

Search Result 204, Processing Time 0.029 seconds

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

Analysis of Engineering Properties to Basalt in Cheju island (제주도 현무암의 공학적 특성 분석)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk;Kim, Jun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To investigate the engineering properties of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area. The laboratory tests such as absorption test, specific gravity test, permeability test, Schmidt hammer test, elastic wave test and uniaxial compressive testwere carried out for the collected rock samples. The absorption, the specific gravity, the permeability, the elastic wave velocity and uniaxial compressive strengthwere investigated and analyzed as the results of these tests. As the result of regression analysis for the relationship between the rebound values from Schmidt hammer test and the uniaxial compressive strengths from uniaxial compressive test, especially, estimation equations were proposed using the rebound values from Schmidt hammer test. Therefore, the simple method to estimate the uniaxial compressive strength was provided.

  • PDF

The Mechanical Properties of the Geochang Granite (거창화강암의 역학적 특성에 관한 연구)

  • Kim, Myeong Kyun
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.24-36
    • /
    • 2015
  • The Geochang granite widely used in construction works is one of the most popular dimension stones in Korea. In order to evaluate the physical properties of rock, a lot of laboratory tests for the Geochang granite were conducted to find unit weight, absorption ratio, P wave velocity, S wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, cohesion, friction angle and point load strength index. The uniaxial compressive strength of the Geochang granite was 19.5 times tensile strength and also 8.6 times cohesion, besides P wave velocity was 1.5 times S wave velocity. Correlation analyses were also conducted to find the correlation among 11 different physical properties, where the uniaxial compressive strength showed Pearson correlation coefficient of more than 0.8 with Poisson's ratio, point load strength index and Young's modulus, respectively. Regression analyses were finally conducted by means of both linear and multiple analysis and the brief results including coefficient of determination of more than 0.7 were presented.

Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method (충격공진법과 초음파속도법을 통한 콘크리트 압축강도 예측의 신뢰성 평가)

  • Lee, Han-Kyul;Lee, Byung-Jae;Oh, Kwang-Chin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.18-24
    • /
    • 2015
  • Non-destructive testing (NDT) methods are widely used in the construction industry to diagnose the defects/strength of the concrete structure. However, it has been reported that the results obtained from NDT are having low reliability. In order to resolve this issue, four kinds of NDT test (ultrasonic velocity measurements by P-wave and S-wave and the impact resonance methods by longitudinal vibration and deformation vibration) were carried out on 180 concrete cylinders made with two kinds of mix proportions. The reliability of the NDT results was analyzed and compared through the measurement of the actual compressive strength of the concrete cylinders. The statistical analysis of the results was revealed that the ultrasonic velocity method by S-wave is having lowest coefficient of variation and also most capable of stable observation. Analytical equations were established to estimate the compressive strength of the concrete from the obtained NDT results by relating the actual compressive strength. Moreover the equation established by the ultrasonic velocity method by S-wave had the highest coefficient of determination. Further studies on the stability of non-destructive testing depending on various mixing conditions will be necessary in the future.

Applicability of Coda Wave Interferometry Technique for Measurement of Acoustoelastic Effect of Concrete

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.428-434
    • /
    • 2014
  • In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

Correlation between Engineering Properties of Rocks in Korea (한반도의 암종별 공학적 특성의 상관성 분석)

  • Kim Gyo-Won;Kim Su-Jeong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.59-68
    • /
    • 2006
  • About 6,000 rock properties obtained from laboratory tests are collected from various projects conducted in Korea Peninsular and the distribution of the properties such as uniaxial compressive strength, cohesion, kriction angle, tangential strength, Young's modulus, p-wave velocity and S-wave velocity are analysed and correlated each other. The empirical equations deduced with 84% of reliability would be useful for preliminary design of geo-structures.

Effects of Curing Condition on the Relationship Between Longitudinal Wave Velocity and Compressive Strength Concrete (양생조건이 콘크리트의 종파속도와 압축강도의 상관관계에 미치는 영향)

  • 이희근;황수덕;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.103-106
    • /
    • 2000
  • Nondestructive tests are useful method in rapidly evaluating the condition of existing concrete structures. An objective of this work is to investigate the factors influencing the longitudinal wave velocity-strength relationship, such as w/c ratio, curing temperature, curing condition. Test results show that a change in the w/c ratio ranging from 0.46 to 0.88 and in the curing temperature from 1$0^{\circ}C$ to 3$0^{\circ}C$ did not alter the velocity-strength relationship. however, curing methods had significant effects on the velocity-strength relationship. Therefore, the estimation of compressive strength until 28 day can be accomplished by only a nonlinear equation with consideration of curing condition.

  • PDF

Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading (상용 알루미늄 합금의 고속 인장/압축 변형거동 규명)

  • Lee, O.S.;Kim, G.H.;Kim, M.S.;Hwang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing

  • Song, Zhengyang;Konietzky, Heinz;Cai, Xin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.281-296
    • /
    • 2021
  • This article analyzed the modulus degradation of concrete subjected to multi-level compressive cyclic loading. The evolution of secant elastic modulus is investigated based on measurements from top loading platen and LVDT in the middle part of concrete. The difference value of the two secant elastic moduli is reduced when close to failure and could be used as a fatigue failure precursor. The fatigue hardening is observed for concrete during cyclic loading. When the maximum stress is smaller the fatigue hardening is more obvious. The slight increase of maximum stress will lead to the "periodic hardening". The tangent elastic modulus shows a specific "bowknot" shape during cyclic loading, which can characterize the hysteresis of stress-strain and is influenced by the cyclic loading stresses. The deterioration of secant elastic modulus acts a similar role with respect to the P-wave speed during cyclic loading, can both characterize the degradation of the concrete properties.

Probing of Mortar Specimens Using Ultrasonic Method Based on the Aging of Mortar (모르타르 시편의 재령에 따른 초음파를 이용한 내부탐사)

  • Park, Young-Seo;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.126-127
    • /
    • 2019
  • Ultrasonic method is useful in determining the compressive strength of concrete as a nondestructive testing technique. As the velocity of the ultrasonic wave changes depending the aging of fresh concrete, it is possible to use the ultrasonic method to measure the degree of concrete curing on site. Recently, the use of steel reinforced concrete is ever increasing. This study is to examine the effect of aging concrete on the velocity of ultrasonic wave so that the compressive strength of concrete can be predicted in the presence of steel inclusions.

  • PDF