DOI QR코드

DOI QR Code

Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing

  • Song, Zhengyang (Department of Civil Engineering, School of Civil & Resource Engineering, University of Science & Technology Beijing) ;
  • Konietzky, Heinz (Geotechnical Institute, TU Bergakademie Freiberg) ;
  • Cai, Xin (School of Resources and Safety Engineering, Central South University)
  • Received : 2020.11.08
  • Accepted : 2021.02.25
  • Published : 2021.05.10

Abstract

This article analyzed the modulus degradation of concrete subjected to multi-level compressive cyclic loading. The evolution of secant elastic modulus is investigated based on measurements from top loading platen and LVDT in the middle part of concrete. The difference value of the two secant elastic moduli is reduced when close to failure and could be used as a fatigue failure precursor. The fatigue hardening is observed for concrete during cyclic loading. When the maximum stress is smaller the fatigue hardening is more obvious. The slight increase of maximum stress will lead to the "periodic hardening". The tangent elastic modulus shows a specific "bowknot" shape during cyclic loading, which can characterize the hysteresis of stress-strain and is influenced by the cyclic loading stresses. The deterioration of secant elastic modulus acts a similar role with respect to the P-wave speed during cyclic loading, can both characterize the degradation of the concrete properties.

Keywords

Acknowledgement

The authors would like to express the sincere gratitude to the help during the laboratory testing from Mr. Munzberger, Mr. Weichmann and Ms. Tauch in the rock mechanics laboratory of geotechnical institute of TU Bergakademie Freiberg, Germany. This article is funded by the Fundamental Research Funds for the Central Universities and Funds from State Key Laboratory of Coal Resources in Western China (SKLCRKF20-07).

References

  1. Ardakani, A., Gholampoor, N., Bayat, M. and Bayat, M. (2018), "Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns", Struct. Eng. Mech., 65(1), 81-89. https://doi.org/10.12989/sem.2018.65.1.081.
  2. Attewell, P.B. and Farmer, I.W. (1973), "Fatigue behaviour of rock", Int. J. Rock Mech. Min. Sci., 10(1), 1-9. https://doi.org/10.1016/0148-9062(73)90055-7.
  3. Bagde, M.N. and Petros, V. (2005a), "Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading", Rock Mech. Rock Eng., 38(3),169-196. https://doi.org/10.1007/s00603-005-0045-8.
  4. Bagde, M.N. and Petros, V. (2005b), "Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading", Int. J. Rock Mech. Min. Sci., 42(2), 237-250. http://dx.doi.org/10.1016/j.ijrmms.2004.08.008.
  5. Bieniawski, Z.T. and Bernede, M.J. (1979), "Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16(2), 138-140. https://doi.org/10.1016/0148-9062(79)91451-7.
  6. Cai, X., Zhou, Z., Tan, L., Zang, H. and Song, Z. (2020b), "Fracture behavior and damage mechanisms of sandstone subjected to wetting-drying cycles", Eng. Fract. Mech., 234, 107109. https://doi.org/10.1016/j.engfracmech.2020.107109.
  7. Cai, X., Zhou, Z., Tan, L., Zang, H. and Song, Z. (2020c), "Saturation effects on thermal infrared radiation features of rock materials during deformation and fracturing", Rock Mech. Rock Eng., 53, 4839-4856. https://doi.org/10.1007/s00603-020-02185-1.
  8. Cai, X., Zhou, Z., Zang, H. and Song, Z. (2020a), "Water saturation effects on dynamic behavior and microstructure damage of sandstone: Phenomena and mechanisms", Eng. Geol., 276, 105760. https://doi.org/10.1016/j.enggeo.2020.105760.
  9. Cerfontaine, B. and Collin, F. (2018), "Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives", Rock Mech. Rock Eng., 51(2), 391-414. https://doi.org/10.1007/s00603-017-1337-5.
  10. Chen, W., Li, S., Li, L. and Shao, M. (2020), "Strengthening effects of cyclic load on rock and concrete based on experimental study", Int. J. Rock Mech. Min. Sci., 135, 104479. https://doi.org/10.1016/j.ijrmms.2020.104479.
  11. Fan, L. and Liu, S. (2019), "Evaluation of permeability damage for stressed coal with cyclic loading: An experimental study", Int. J. Coal. Geol., 216, 103338. https://doi.org/10.1016/j.coal.2019.103338.
  12. Fu, B., Hu, L. and Tang, C. (2019), "Experimental and numerical investigations on crack development and mechanical behavior of marble under uniaxial cyclic loading compression", Int. J. Rock Mech. Min. Sci., 130, 104289. https://doi.org/10.1016/j.ijrmms.2020.104289.
  13. Geranmayeh, V.R., Ferdosi, B., Okoth, A.D. and Kuek, B. (2018), "Strength degradation of sandstone and granodiorite under uniaxial cyclic loading", J. Rock Mech. Geotech. Eng., 10(1), 117-126. https://doi.org/10.1016/j.jrmge.2017.09.005.
  14. Hadi, M.N.S. and Al-Hedad, A.S.A. (2020), "Flexural fatigue behaviour of geogrid reinforced concrete pavements", Constr. Build. Mater., 249, 118762. https://doi.org/10.1016/j.conbuildmat.2020.118762.
  15. He, M., Huang, B., Zhu, C., Chen, Y. and Li, N. (2018), "Energy dissipation-based method for fatigue life prediction of rock salt", Rock Mech. Rock Eng., 51(5), 1447-1455. https://doi.org/10.1007/s00603-018-1402-8.
  16. Hossain, Z., Indraratna, B., Darve, F. and Thakur, P.K. (2007), "DEM analysis of angular ballast breakage under cyclic loading", Geomech. Geoengin., 2(3), 175-181. https://doi.org/10.1080/17486020701474962.
  17. Hutagi, A., Khadiranaikar, R.B. and Zende, A.A. (2020), "Behavior of geopolymer concrete under cyclic loading", Constr. Build. Mater., 246, 118430. https://doi.org/10.1016/j.conbuildmat.2020.118430.
  18. Isojeh, B., El-Zeghayar, M. and Vecchio, F.J. (2017), "High-cycle fatigue life prediction of reinforced concrete deep beams", Eng. Struct., 150, 12-24. https://doi.org/10.1016/j.engstruct.2017.07.031.
  19. Kim, Y.K., Ham, G.S., Kim, H.S. and Lee, K.A. (2019), "High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading", Intermetallics, 111, 106486. https://doi.org/10.1016/j.intermet.2019.106486.
  20. Korsunsky, A.M., Dini, D., Dunne, F.P.E. and Walsh, M.J. (2007), "Comparative assessment of dissipated energy and other fatigue criteria", Int. J. Fatigue, 29(9-11), 1990-1995. https://doi.org/10.1016/j.ijfatigue.2007.01.007.
  21. Liu, E. and He, S. (2012), "Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions", Eng. Geol., 125, 81-91. https://doi.org/10.1016/j.enggeo.2011.11.007.
  22. Liu, Y., Dai, F., Zhao, T. and Xu, N. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock. Mech. Rock Eng., 50(1), 89-112. https://doi.org/10.1515/jpem-2016-0229.
  23. Mourlas, C., Papadrakakis, M. and Markou, G. (2017), "A computationally efficient model for the cyclic behavior of reinforced concrete structural members", Eng. Struct., 141, 97-125. https://doi.org/10.1016/j.engstruct.2017.03.012.
  24. Oneschkow, N. (2016), "Fatigue behaviour of high-strength concrete with respect to strain and stiffness", Int. J. Fatigue, 87, 38-49. http://dx.doi.org/10.1016/j.ijfatigue.2016.01.008.
  25. Peng, K., Zhou, J., Zou, Q. and Song, X. (2019b), "Effect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanism", Int. J. Fatigue, 131, 105349. https://doi.org/10.1016/j.ijfatigue.2019.105349.
  26. Peng, K., Zhou, J., Zou, Q. and Yan, F. (2019c), "Deformation characteristics of sandstones during cyclic loading and unloading with varying lower limits of stress under different confining pressures", Int. J. Fatigue, 127, 82-100. https://doi.org/10.1016/j.ijfatigue.2019.06.007.
  27. Peng, K., Zhou, J., Zou, Q., Zhang, J. and Wu, F. (2019a), "Effects of stress lower limit during cyclic loading and unloading on deformation characteristics of sandstones", Constr. Build. Mater., 217, 202-215. https://doi.org/10.1016/j.conbuildmat.2019.04.183.
  28. Rao, M.V.M.S. and Ramana, Y.V. (1992), "A study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniques", Rock Mech. Rock Eng., 25(4), 237-251. https://doi.org/10.1007/BF01041806.
  29. Sadeghi, K. and Nouban, F. (2016), "Damage and fatigue quantification of RC structures", Struct. Eng. Mech., 58(6), 1021-1044. https://doi.org/10.12989/sem.2016.58.6.1021.
  30. Sengupta, P. and Li, B. (2014), "Hysteresis behavior of reinforced concrete walls", J. Struct. Eng., 140, 04014030. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000927.
  31. Song, Z., Fruhwirt, T. and Konietzky, H. (2018a), "Characteristics of dissipated energy of concrete subjected to cyclic loading", Constr. Build. Mater., 168, 47-60. https://doi.org/10.1016/j.conbuildmat.2018.02.076.
  32. Song, Z., Fruhwirt, T. and Konietzky, H. (2020), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int. J. Fatigue, 132, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383.
  33. Song, Z., Konietzky, H. and Fruhwirt, T. (2018b), "Hysteresis energy-based failure indicators for concrete and brittle rocks under the condition of fatigue loading", Int. J. Fatigue, 114, 298-310. https://doi.org/10.1016/J.IJFATIGUE.2018.06.001.
  34. Song, Z., Konietzky, H. and Fruhwirt, T. (2019a), "Hysteresis and dynamic response features of concrete exposed to repeated multilevel compressive loading", J. Mater. Civil Eng., 31, 04019066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002703.
  35. Song, Z., Konietzky, H. and Herbst, M. (2019b), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotechnica, 14(4), 955-971. https://doi.org/10.1007/s11440-018-0723-9.
  36. Song, Z., Konietzky, H. and Herbst, M. (2019c), "Three-dimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete", Constr. Build. Mater., 225, 661-677. https://doi.org/10.1016/j.conbuildmat.2019.07.260.
  37. Song, Z., Wang, Y., Konietzky, H. and Cai, X. (2021) "Mechanical behavior of marble exposed to freeze-thaw-fatigue loading", Int. J. Rock Mech. Min. Sci., 138, 104648. https://doi.org/10.1016/j.ijrmms.2021.104648.
  38. Sun, B., Zhu, Z., Shi, C. and Luo, Z. (2017), "Dynamic mechanical behavior and fatigue damage evolution of sandstone under cyclic loading", Int. J. Rock Mech. Min. Sci., 94, 82-89. https://doi.org/10.1016/j.ijrmms.2017.03.003.
  39. Trivedi, N., Singh, R.K. and Chattopadhyay, J. (2015), "Size independent fracture energy evaluation for plain cement concrete", Fatigue Fract. Eng. Mater. Struct., 38(7), 789-798. https://doi.org/10.1111/ffe.12283.
  40. Voznesenskii, A.S., Kutkin, Y.O., Krasilov, M.N. and Komissarov, A.A. (2015), "Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor", Int. J. Fatigue, 77, 194-198. https://doi.org/10.1016/j.ijfatigue.2015.02.012.
  41. Wang, J., Zhang, Q., Song, Z. and Zhang, Y. (2021), "Experimental study on creep properties of salt rock under long-period cyclic loading", Int. J. Fatigue, 143, 106009. https://doi.org/10.1016/j.ijfatigue.2020.106009.
  42. Wang, Y., Feng, W. and Li, C. (2020a), "On anisotropic fracture and energy evolution of marble subjected to triaxial fatigue cyclic-confining pressure unloading conditions", Int. J. Fatigue, 134, 105524. https://doi.org/10.1016/j.ijfatigue.2020.105524.
  43. Wang, Y., Gao, S., Liu, D. and Li, C. (2020b), "Anisotropic fatigue behaviour of interbeded marble subjected to uniaxial cyclic compressive loads", Fatigue Fract. Eng. Mater. Struct., 43(6), 1170-1183. https://doi.org/10.1111/ffe.13191.
  44. Wang, Y., Li, C., Han, J. and Wang, H. (2020c), "Mechanical behaviours of granite containing two flaws under uniaxial increasing-amplitude fatigue loading conditions: An insight into fracture evolution analyses", Fatigue Fract. Eng. Mater. Struct., 43(9), 2055-2070. https://doi.org/10.1111/ffe.13283.
  45. Wang, Y., Liu, D., Han, J., Li, C. and Liu, H. (2020d), "Effect of fatigue loading-confining stress unloading rate on marble mechanical behaviors: An insight into fracture evolution analyses", J. Rock Mech. Geotech. Eng., 12(6), 1249-1262. https://doi.org/10.1016/j.jrmge.2020.08.002.
  46. Wei, W., Feng, Y., Han, L., Zhang, Q. and Zhang, J (2018), "Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures", Mater. Sci. Eng. A, 734, 20-26. https://doi.org/10.1016/j.msea.2018.07.084.
  47. Wei, Y., Tang, S., Ji, X., Zhao, K, and Li, G. (2020), "Stress-strain behavior and model of bamboo scrimber under cyclic axial compression", Eng. Struct., 209, 110279. https://doi.org/10.1016/j.engstruct.2020.110279.
  48. Xi, D., Chen, Y., Tao, Y. and Liu, Y. (2006), "Nonlinear elastic hysteric characteristics of rocks", Chin. J. Rock Mech. Eng., 25(6), 1086-1093. https://doi.org/10.3321/j.issn:1000-6915.2006.06.002
  49. Xiao, J., Ding, D., Jiang, F. and Xu, G. (2010), "Fatigue damage variable and evolution of rock subjected to cyclic loading", Int. J. Rock. Mech. Min. Sci., 47(3), 461-468. http://dx.doi.org/10.1016/j.ijrmms.2009.11.003.
  50. Zhang, C., Jiang, G., Buzzi, O. and Su, L. (2019), "Full-scale model testing on the dynamic behaviour of weathered red mudstone subgrade under railway cyclic loading", Soil. Found., 59(2), 296-315. https://doi.org/10.1016/j.sandf.2018.11.007.
  51. Zhang, M., Dou, L., Konietzky, H., Song, Z. and Huang, S. (2020), "Cyclic fatigue characteristics of strong burst-prone coal: Experimental insights from energy dissipation, hysteresis and micro-seismicity", Int. J. Fatigue, 133, 105429. https://doi.org/10.1016/j.ijfatigue.2019.105429.
  52. Zhao, X., Wang, J., Cai, M., Cheng, C., Ma, L., Su, R., Zhao, F. and Li, D. (2014), "Influence of unloading rate on the strainburst characteristics of Beishan granite under true-triaxial unloading conditions", Rock Mech. Rock Eng., 47(2), 467-483. https://doi.org/10.1007/s00603-013-0443-2.
  53. Zheng, M., Li, P., Yang, J., Li, H., Qiu, Y. and Zhang, Z. (2019), "Fatigue character comparison between high modulus asphalt concrete and matrix asphalt concrete", Constr. Build. Mater., 206, 655-664. https://doi.org/10.1016/j.conbuildmat.2019.01.170.
  54. Zhong, C., Zhang, Z., Ranjith, P.G., Lu, Y. and Choi, X. (2019), "The role of pore water plays in coal under uniaxial cyclic loading", Eng. Geol., 257, 105125. https://doi.org/10.1016/j.enggeo.2019.05.002.
  55. Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019), "Dynamic response and energy evolution of sandstone under coupled static-dynamic compression: Insights from experimental study into deep rock engineering applications", Rock Mech. Rock Eng., 53(3), 1305-1331. https://doi.org/10.1007/s00603-019-01980-9.

Cited by

  1. Mechanical and Acoustic Responses of Brittle Geomaterials with a Hole under a Compressive Disturbance vol.2021, 2021, https://doi.org/10.1155/2021/5292925
  2. Rock mass watering for rock-burst prevention: some thoughts on the mechanisms deduced from laboratory results vol.80, pp.11, 2021, https://doi.org/10.1007/s10064-021-02467-0