• Title/Summary/Keyword: Compressive strength of cement

검색결과 2,513건 처리시간 0.031초

낙동강 하구역 준설토 재활용을 위한 시멘트 혼합경량토의 압축강도 특성 연구 (Compressive Strength Characteristics of Cement Mixing Lightweight Soil For Recycling of Dredged Soil in Nakdong River Estuary)

  • 김윤태;김홍주;권용규
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.7-15
    • /
    • 2006
  • In this research, the behavior characteristics of cement mixing lightweight soil (CMLS) for recycling of dredged soil in the Nakdong River estuary are experimentally investigated. CMLS is composed of the dredged soil from Nakdong River estuary, cement, and air foam. For this purpose, uniaxial compression tests are carried out for artificially prepared specimens of CMLS, with various initial water contents, cement contents, and mixing ratio of dredged soils. The experimental results of CMLS indicated that the compressive strength is strongly influenced by the cement contents, rather than water contents and air foam. Compressive strength of CMLS increased with an increase in cement content, while it decreased with an increase in water content and air foam content. It was also found that the modulus of deformation E50 was in a range of 44 to 128 times greater than the value of uniaxial compressive strength, cured in 28 days.

Effect of waste cement bag fibers on the mechanical strength of concrete

  • Marthong, Comingstarful
    • Advances in materials Research
    • /
    • 제8권2호
    • /
    • pp.103-115
    • /
    • 2019
  • Polypropylene (PP) fibers for making fabric which is used for packing cement have a high strength and high tear resistance. Due to these excellent properties the present study investigates the effect of PP fibers on the mechanical strength of concrete. Mechanical strength parameters such as compressive strength, splitting tensile strength and flexural strength are evaluated. Structural integrity of concrete using Ultrasonic Pulse Velocity (UPV) was also studied. Concrete containing PP fibers in percentage of 0%, 0.15%, 0.25%, 0.5% and 0.75% was developed with a characteristic compressive strength of 25 MPa. Concrete cubes, cylinder and prismatic specimens were cast and tested. It was found that the UPV values recorded for all specimens were of the similar order. Test results indicated the used of PP fibers can significantly improve the flexural and splitting tensile strengths of concrete materials whereas it resulted a decreased in compressive strength. The relative increase in split tensile and flexural strength was optimum at a fiber dosage of 0.5% and a mild decreased were observed in 28 days compressive strength. The findings in this paper suggested that PP fibers deriving from these waste cement bags are a feasible fiber option for fiber-reinforced concrete productions.

알루미노 실리케이트계 지오폴리머의 압축강도에 미치는 알카리 활성화제의 영향 (Influence of Alkaline-activator Content on the Compressive Strength of Aluminosilicate-based Geopolymer)

  • 김진태;서동석;김갑중;이종국
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.216-222
    • /
    • 2010
  • Portland cement has been restricted in applications to ecological area because of its environmental harmfulness and the $CO_2$ emission during a production process. Geopolymer materials attract some attention as an inorganic binder due to their superior mechanical and eco-friendly properties. In this study, geopolymer-based cement was prepared by using aluminosilicate minerals (flyash, meta-kaolin) with alkaline-activators and its compressive strength with concentration of alkaline-activators was investigated. Aluminosilicate-based geopolymers were obtained by mixing aluminosilicate minerals, alkaline solution (NaOH or KOH with different concentration) and water-glass under the vigorous stirring for 20 min. Compressive strength after curing at $30^{\circ}C$ for 3 days increased with the concentration of alkaline-activator due to the enhanced polymerization of the aluminosilicate materials and dense microstructure. Aluminosilicate-based geopolymer cement using KOH as an alkaline-activator showed high compressive strength compared with NaOH activator. In addition, geopolymer cement using fly-ash as a raw material showed higher compressive strength than that of meta-kaolin.

소성볏짚을 혼입한 콘크리트의 압축강도 특성에 관한 연구 (A Study on the Compressive Strength Property of Concrete using Rice Straw Ash)

  • 정의창;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.26-27
    • /
    • 2015
  • The purpose of this study was to investigate the compressive strength property into concrete using rice straw ash.. In an effort to evaluate the effects of rice straw ash as mineral admixture, rice straw ash was mixed with cement at the mixture ratio of 0, 5, 10 and 15% relative to the cement weight. When the mixture ratio of rice straw ash was 10%, the highest compressive strength was observed, while the strength tended to decrease when the mixture ratio of rice straw ash was 15% even if it exhibited higher compressive strength than the plain. And it was observed that compressive strength of concrete containing rice husk ash was a similar a compressive strength of concrete containing silica fume.

  • PDF

초기강도 증진을 위한 황산알루미늄 혼입 시멘트 모르타르의 물리적 특성 (Physical Properties of Cement Mortar using Aluminum Sulfate as Admixture for Early Strength)

  • 강내민;문경주;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.293-296
    • /
    • 2003
  • The purpose of this study is to examine the effect of aluminium sulfate on setting time and compressive strength of cement mortar as focused on formation of ettringite by the reaction between aluminium sulfate and calcium hydrate. The specific parameter was the addition ratio of aluminium sulfate to cement mortar. After specimens made by admixing aluminium of 0~7% by weight of cement, respectively, to cement mixtures, the experimental items such as setting time, compressive strength and heat of hydration in this study were carried out. As a result of this study, it is possible that aluminium sulfate could be added into cement mixture from a standpoint of increasing early compressive strength as considering the setting time and heat of hydration.

  • PDF

고강도 콘크리트의 적정 단위시멘트량 선정 방안 (A Study on the Optimum Cement Content of High Strength Concrete)

  • 이장화;김성욱;이종석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.173-179
    • /
    • 2003
  • 실제 현장에서 사용하고 있는 고강도 콘크리트 배합의 단위시멘트량은 대부분의 경우 소요의 슬럼프를 확보하는데 필요한 양으로 결정된다. 이 방법은 보통 강도 콘크리트의 배합설계 개념을 적용한 것이기 때문에 필요 이상의 단위시멘트량을 사용하게 된다. 따라서 상대적으로 많은 양의 시멘트를 사용하게 되어 콘크리트의 내구성을 저하시키게 된다. 이에 본 연구에서는 고강도 콘크리트의 내구성과 시공성 및 강도를 동시에 고려한 적정 단위시멘트량을 분석하였으며, 적정 단위시멘트량을 사용함에 따른 혼화제 첨가량 및 적정잔골재율에 대해 검토하였다. 실험 결과, 본 연구의 실험조건에서 단위시멘트량을 $370kg/m^3$으로부터 $550kg/m^3$까지 사용하더라도 압축강도의 차이는 거의 없는 것으로 나타났다. 따라서 콘크리트의 배합시 소요의 설계강도뿐만 아니라 내구성과 시공성을 동시에 만족하는 최소의 단위시멘트량을 결정하여 적용하여야 할 것으로 판단된다.

재생골재를 사용한 콘크리트의 강도에 미치는 포졸란 시멘트 효과 (Effect of the Pozzolanic Cement on Concrete Strengths with Recycled Aggregate)

  • 문대중;임남웅;김양배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.217-220
    • /
    • 2001
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment, especially being want of resources in Korea. For this purpose, concrete made with the pozzolanic cement and recycled aggregate was tested for compressive and tensile strength. The pozzolanic cement was a mixture of OPC(Ordinary Portland Cement) and pozzolans such as fly ash, other siliceous materials and early rapid hardening cement(ERC). It was found that the compressive strength of the pozzolanic cement was enhanced when 0.75% of ERC was dozed, as compared with OPC mortar. It was also shown that compressive and tensile strength of concrete with recycled aggregate and pozzolanic cement were higher than those of concrete with crushed stones and OPC. It was concluded that the pozzolanic cement influenced on the increase of concrete strengths with recycled aggregate.

  • PDF

Hexagonal-Boron Nitride 강화 시멘트 복합체의 압축강도 향상에 대한 실험적 연구 (Experimental Study on Improving Compressive Strength of Hexagonal Boron Nitride Reinforced Cement Composite)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.503-508
    • /
    • 2020
  • The mechanical properties and microstructures of hexagonal boron nitride (h-BN)-reinforced cement composites are experimentally studied for three and seven curing days. Various sizes (5, 10, and 18 ㎛) and concentrations (0.1%, 0.25%, 0.5%, and 1.0%) of h-BN are dispersed by the tip ultrasonication method in water and incorporated into the cement composite. The compressive strength of the h-BN reinforced cements increases by 40.9%, when 0.5 wt% of 18 ㎛-sized h-BN is added. However, the compressive strength decreases when the 1.0 wt% cement composite is added, owing to the aggregation of the h-BNs in the cement composite. The microstructural characterization of the h-BN-reinforced cement composite indicates that the h-BNs act as bridges connecting the cracks, resulting in improved mechanical properties for the reinforced cement composite.

포수양생 시간이 초고강도 시멘트 페이스트의 압축강도에 미치는 영향 (Effect of Water absorbing Curing Time on Compressive Strength of Ultra High Strength Cement Paste)

  • 장종민;장현오;최현국;안동희;김인수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2017
  • The purpose of this study is to derive the optimum water absorbing curing time. It was found that the cement paste compressive strength was increased with the water absorbing ratio up to 40%, but the compressive strength was slightly lower when the catch level was over 50%. It is considered that the superfluous water did not react and remained in the inside of the specimen, causing microcracks in the inside due to the high temperature curing, resulting in a decrease in strength. Therefore, it is considered that the optimum catcher curing time for improving the strength through catcher curing is when the catcher reaches 40%.

  • PDF

고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성 (Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design)

  • 정연웅;오성우;조영근;정상화;김주형
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.585-593
    • /
    • 2021
  • 본 연구에서는 고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성을 분석하기 위해 물/결합재비, OPC 대비 실리카 흄의 함량 및 단위 결합재량을 변수로 총 64개의 배합조건과 2종류의 양생 조건으로 배합실험 및 압축강도 측정을 실시하였다. 일반적인 OPC 콘크리트와 유사하게 물/결합재비의 증가는 고강도 시멘트 복합체의 압축강도를 감소하는 것으로 나타났으며, 상온 양생 시편의 경우 재령일에 따른 압축강도 증가가 뚜렷하게 발생하는 것으로 조사되었다. 하지만 고온 양생을 실시하는 경우 재령일에 따른 압축강도 증가는 관찰되지 않았다. OPC 대비 실리카 흄의 함량이 25%에서 15%로 낮아지는 경우 강도 변화는 미미한 것으로 조사되었으나, 15%에서 0% 감소하는 경우 뚜렷한 강도 감소가 식별되며, 물/결합재비가 낮은 경우 이러한 현상은 더욱 두드러지는 것으로 조사되었다. 단위 결합재량의 840kg/m3인 경우 압축강도 발현이 가장 우수한 것으로 나타났으며, 실리카 흄 함량이 낮은 경우 단위 결합재량 감소에 따른 압축강도 저하가 뚜렷해지는 것으로 조사되었다.