• Title/Summary/Keyword: Compressive Strength Experiment

Search Result 613, Processing Time 0.026 seconds

A Study on the Shear Behavior of Recycled Aggregate Reinforced Concrete Beams without Stirrups (전단보강이 없는 순환골재 철근콘크리트 보의 전단거동에 관한 연구)

  • Lee, Jung-Hoon;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Little investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. So, this experiment investigates the shear performance and suggests the possible application of Recycled Concrete Aggregate (RCA) for building structures. In general, shear strength of reinforced concrete beam without stirrups is dependent on the compressive strength of concrete, the longitudinal steel ratio, and the shear span-to-depth ratio. In this study, total 28 recycled aggregate concrete beams without shear reinforcement were tested by two-point load and all beams were singly reinforced. The variables studied in this investigation are shear span-to-depth ratios (a/d=2, 3 and 4), RCA replacement ratios (0, 15, 30 and 50%) and longitudinal steel ratios (0.80, 1.27 and 1.84%). The designed concrete compressive strength with a 30 MPa is used. This research will play an important role toward the establishment of the structural design standard for RCA concrete.

Evaluation Techniques for Residual Structural Performance of a Reinforced Concrete slab under Fire Damage (화재 피해를 입은 철근콘크리트 슬래브의 잔존 구조성능 평가기법)

  • Choi, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.588-594
    • /
    • 2020
  • This study proposes non-destructive rebound-hardness and ultrasonic testing methods to more accurately evaluate the residual structural performance of reinforced concrete structures in a fire. Techniques are also proposed to assess the stiffness used in the deflection calculation with natural frequencies obtained by vibration tests. In the compressive strength evaluation using rebound hardness, the residual compressive strength of thick specimens and a larger water/cement (W/C) ratio were shown to be large. The homogeneity of concrete at high temperature compared to ambient temperature conditions was assessed by the velocity of ultrasonic waves that penetrate the concrete, and it followed W/C or thickness of slab makes little different results. To assess the stiffness of fire-damaged slabs and increase in deflection, the natural frequency was measured by vibration tests and incorporated into the equation of the stiffness. The application of this technique to the slab experiment showed that it can be a very reasonable evaluation technique. In addition, to evaluate the residual strength of a member after fire, a test of the strength of a component was carried out during and after heating.

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

Analysis of the Characteristics of Manufactured Concrete, according to the Type of Admixture used when Remixing and Placing it (혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시 특성 분석)

  • Ryu, Hyun-Gi;Shin, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.95-102
    • /
    • 2010
  • In recent years, the demand for the development of high quality and cost effective materials, as well as the competition to ensure a diverse and sufficient amount of ready-mixed concrete, has been increasing rapidly. In this experiment, concretes made with different admixtures are blended with each other in different combinations and ratios, in order to identify potential problems. The first test was a slump level test, in which all of the concretes met the required numbers, as they also did in the test for air content. Plain organic acid concrete scored the highest in bleeding amount, but organic acid mix in general showed a similar outcome. In the early measurement of compressive strength, plain naphthalene concrete was the strongest. Of the blends, the 5:5 mix of organic acid and naphthalene was the strongest. In the standard measurement, the 5:5 mix of naphthalene and lignin was the strongest. Tensile strength tests revealed similar results. Length change rate proved to be greater in blended concrete than in plain concrete, and dry shrinkage rate was highest in the 7:3 ratio blends. Through SEM photo analysis, it was confirmed that the 7:3 ratio blends contained more micro-voids. In conclusion, with the exception of a specific few combinations, it was found that the blending of different types of concrete is undesirable due to the delayed coagulation time as well as the early decrease in strength.

A Study on the Properties of Foamed Concrete with Plaster Using the Experimental Design (실험계획법을 이용한 석고 혼입 기포콘크리트의 특성에 관한 연구)

  • Lee, Sang-An;Kim, Wha-Jung;Yoon, Sang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2013
  • This research was performed through the experimental design to get the statistical analysis on foamed concrete mixed plaster with hydrogen peroxide. In this experiment, we set the ratio of each material, which part of lightweight concrete, as experimental factors and evaluated on the mechanical properties by statistical analysis for response variables obtained from experiments. Experimental factors are plaster replacement, water binder ratio, and hydrogen peroxide ratio. Response variables are dry density, compressive strength, and flexural strength. Mixing design of the foamed concrete set up a total of 15 experimental points by Box-Behnken (BB) method of the response surface analysis. Thus, the results of a study were summarized as follows. Values of the probability in experimental factors (plaster replacement, water binder ratio and hydrogen peroxide ratio) on the response variables were estimated to be significant at the 95% of confidence limit. On response surface analysis for dry density of foamed concrete, water binder ratio and hydrogen peroxide ratio were estimated to be significant (${\alpha}$ = 0.05), and the relationship between the amount of void and the water content for dry density is inverse proportional. On response surface analysis for the compressive strength of foamed concrete, water binder ratio, hydrogen peroxide ratio and (hydrogen peroxide ratio)$^2$ was estimated to be significant (${\alpha}$ = 0.05). On response surface analysis for the flexural strength of foamed concrete, water binder ratio, hydrogen peroxide ratio was estimated to be significant (${\alpha}$ = 0.05). Through multi response surface analysis, we found the optimal area that meets performance goals.

Material Characteristics of Rapid Hardening Cement Paste Using Phase Change Material for Semi-rigid Pavement (상변화물질을 사용한 반강성 포장용 초속경시멘트 페이스트 재료의 성능평가)

  • Kim, Seung-Su;Lee, Byung-Jae;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • A study to apply phase change material(PCM) to rapid hardening cement paste forming semi-rigid pavement was carried out. The characteristics fresh and hardened paste were evaluated through the experiment for a total of 6 mixtures according to the cement type and the substitution of phase change material for acrylate. The fluidity by substituting phase change material for acrylate satisfied the target flow time of 10 to 13 seconds. In case of setting time, it was possible to secure the performance of rapid hardening cement by substituting phase change material, and if the substitution ratio over 60%, the initial set occurred 1 to 2 minutes faster than other mixtures. In case of compressive strength and bond strength, it showed similar strength characteristics with the plain mixture, and it satisfied both the target compressive and bonding strength of 36MPa and 2MPa. The mixture substituting phase change material showed higher resistance to chloride ion penetration than the mixture only using acrylate and the OPC level was insufficient. From the results of physical and mechanical performances of semi-rigid pavement cement paste, the phase change material substitution rate of 20% was effective in the range of this study.

Field Application and Maintenance of sidewalk concrete block for PV Power Generation (태양광 발전을 위한 보도형 콘크리트 블록의 현장 적용과 유지관리)

  • Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • In order to fulfill the obligation to voluntarily reduce greenhouse gas emissions under the Paris Climate Agreement, the proportion of coal and nuclear power generation is reduced worldwide and national efforts are being made to spread renewable energy including solar power generation. Korea also intends to increase the proportion of renewable energy generation to 30~35% by 2040 by introducing laws and regulations. In addition, while the country is trying to apply solar power generation to sidewalks and roads, there is no research related to it in Korea. Therefore, as a precedent study to develop solar power generation roads, solar power generation concrete blocks applicable to sidewalks and plazas were developed and the applicability was evaluated by constructing them on the site. As a result of indoor experiment, compressive strength was measured by 25.5~35.7MPa and flexural strength was measured by 5.1~10.5MPa, which showed that all domestic standards were satisfied. However, the higher the unit cement amount, the lower the strength was measured according to the mixing of the broken fine aggregate. The absorption rate was 5.7%, which satisfied the domestic standard of 7% or less. As a result of the freeze-thawing test, the reduction rate of the compressive strength after 100 cycles was up to 6.3%. As a result of measuring the settlement amount after construction, the maximum of 2.498mm was measured and irregular settlement occurred in the overall area, which is because the resolution of the sand layer was poor during construction. Maintenance techniques of sidewalk concrete block and solar panel need to be established more efficiently through long-term operation in the further.

The Foundation Performance of Selected Waste Plastic Wastes Used in Cement Manufacturing (시멘트 제조에 사용되는 선별된 폐플라스틱 폐기물류 원료로서의 기초 특성 평가)

  • Han, Jong-Min;Kang, Bong-Hee;Park, Jae-Yong;Lee, Jeong-Wook;Kim, Nam-Gyu
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.88-97
    • /
    • 2020
  • In this study, the selected waste plastic waste logistics used for cement sintering were classified into two types through the process of sorting and crushing, analyzing the characteristics of each, and analyzing the correlation of the strength after cement manufacturing. The experimental variables were classified into soft and hard waste plastic waste, and the correlations between calorific value, chlorine, and moisture were analyzed. In addition, some of each waste was selected and melted, and the basic characteristics were evaluated by analyzing the structure and calorific value. The results of the experiment showed that it was evaluated that it is suitable to obtain a heat source by separating soft waste plastic wastes and sintering them with materials having similar properties. As a result of examining the wastes by strength after cement manufacturing, it was analyzed that the use of hard plastics greatly contributes to the compressive strength on the 1st and 28th, and the use of soft plastics contributes to the compressive strength on the 28th. However, these characteristics are evaluated by collecting only a part of the waste, and since the deviation of the waste occurs, continuous management is required, and a follow-up study on the environmental problems caused by the use of waste is required.

Development and performance of inorganic thixotropic backfill for shield TBM tail voids (무기질계 가소성 TBM 뒤채움재 개발 및 성능)

  • Lee, Seongwoo;Park, Jinseong;Ryu, Yongsun;Choi, Byounghoon;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • This paper contains experimental study for the development and performance of TBM backfill material with thixotropic properties. The LW backfill material is widely applied to fill the cavity on the back side of the shield TBM excavation, but has disadvantages such as settlement caused by strength reduction, material separation by groundwater, and reduced plasticity. In this paper, laboratory tests and a model test were conducted to assess the performance of inorganic thixotropic backfill material proposed to improve these problems. The results of laboratory tests show that 1 hr-uniaxial compressive strength of ITB was 12 times higher than LW, and the rate of bleeding of 20 hr was 8.3 times lower, and the result of flow table test was more than 27 times higher. This result indicated that the inorganic thixotropic backfill material has superior properties to LW backfill in terms of strength reduction, material separation, and thixotropy. In the model experiment, a model injection device tester was manufactured and the injection performance and filling rate were verified. When material was injected in the water, it was visually checked whether material separation occurred, and it was confirmed that the filling rate was 96% or more. Comparison results with the test of LW and ITB materials was concluded that ITB can reduce the material separation by groundwater and the occurrence of tunnel cavity.