• Title/Summary/Keyword: Compressive Strength Experiment

Search Result 613, Processing Time 0.028 seconds

Evaluation of Optimum Mix Proportion and Strength of Volcanic Ash based Geopolymer (화산재 기반 지오폴리머의 최적배합 도출 및 강도 특성)

  • Nam, Chang-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.720-727
    • /
    • 2017
  • This study determined the optimum mix proportions for volcanic-ash-based geopolymer by analyzing the flow, setting time, and compressive strength. $Na2SiO_3$ and NaOH were used as alkali activators, and NaOH concentrations of 2, 4, 6, and 8M were used for different experimental cases. The A/B ratios examined were 0.25, 0.3, 0.35, 0.4, and 0.45, and the ratios of volcanic ash to blast furnace slag binder were 7:3, 6:4, and 5:5. In the experiment, the flow and setting time tended to decrease and the compressive strength increased as the molarity of NaOH in the geopolymer increased. The optimum molarity of NaOH was determined to be 4M. As the A/B ratio increased, the setting time decreased and the compressive strength increased. The most advantageous A/B ratio for the setting time and strength was 0.35. Increasing the ratio of volcanic ash resulted in a longer setting time and lower compressive strength. The optimum binder ratio was chosen as 6:4 based on the setting time and compressive strength. Thus, 4M of NaOH, an A/B ratio of 0.35, and binder ratio of 6:4 are considered as the proper parameters for the volcanic-ash-based geopolymer.

Modified Sulfur Distribution and Compressive Strength Characteristics of Modified Sulfur Mortar Based on the Mixing Method and Curing Condition (비빔방법과 양생조건에 따른 개질유황 모르타르의 개질유황 분포도 및 압축강도 특성)

  • Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • As industry advances, the production of industrial sulfur is increasing every year. Therefore, this study intended to investigate the modified sulfur distribution and compressive strength characteristics of modified sulfur mortar based on the mixing method and curing conditions by adding modified sulfur with a melting point of approximately $65^{\circ}C$ in order to provide basic data for the application of the modified sulfur to the mortar or concrete. The results of the experiment showed that the mixture of fine aggregate and cement with water, followed by the addition of modified sulfur, would be most advantageous in terms of fluidity and strength. The results of EDS analysis also showed that the distribution of sulfur was the best. In terms of the curing conditions, the highest compressive strength was achieved through water curing and air dry curing at $20^{\circ}C$. However, it was found that the long-term strength was adversely affected by curing at over $40^{\circ}C$.

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Developing and Assessing Geopolymers from Seochun Pond Ash with a Range of Compositional Ratios (서천화력발전소 매립 석탄재로부터 제조한 다양한 조성비의 지오폴리머와 그 특성의 평가)

  • Lee, Sujeong;Jou, Hyeong-Tae;Chon, Chul-Min;Kang, Nam-Hee;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • Pond ash produced from Seochun Power Station was quantitatively characterized to manufacture geopolymers with a range of Si/Al compositional ratios. Mix consistency was kept nearly constant for comparing the compressive strengths of geopolymers. The amorphous composition of coal ash was determined using XRF and quantitative X-ray diffraction. Different mix compositions were used in order to achieve Si/Al ratios of 2.0, 2.5 and 3.0 in the geopolymer binder. Geopolymers synthesized from coal ash with a Si/Al ratio of 3.0 exhibited the highest compressive strength in this study. It was found that geopolymers activated with aluminate produced different microstructure from that of geopolymers activated with silicate. High silica in alkali activators produced the fine-grained microstructure of geopolymer gel. It was also found that high compressive strength was related to low porosity and a dense, connected microstructure. The outcome of the reported experiment indicates that quantitative formulation method made it possible to choose suitable activators for achieving targeted compositions of geopolymers and to avoid efflorescence.

A Fundamental Study on the Workability and Engineering Properties of Super High Strength Concrete Replaced Cement As Fly ash (플라이애쉬를 대체한 초고강도 콘크리트의 시공성 및 공학적 특성에 관한 기초적 연구)

  • 류광일;윤병수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.5-10
    • /
    • 1993
  • Recently, owing to efficiency of the concrete work and the rationalization of construction structures, concrete is required to be super high strength. Furthermore, it is take a growing interest in execution and manufacture for super high strength concrete. This study is to investigate and analyze the influenced of flyash affecting on workability and engineering properties of super high strength concrete. In this experiment, the 28day's compressive strength of concrete using 15mm size of aggregate and flyash is over 800㎏/㎠ in the 20°/wt of water∼cement ratio. And the concrete using flyash have higher tensile strength than plain concrete.

  • PDF

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.

COMPARATIVE STUDY ON THE FLUORIDE RELEASE AND COMPRESSIVE STRENGTH OF SEVERAL F-CONTAINING RESTORATIVE MATERIALS (수종의 불소 함유 수복재의 불소 유리 및 압축 강도에 관한 연구)

  • Park, Jee-Young;Kim, Jong-Soo;Kim, Seung-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.469-476
    • /
    • 2008
  • This study was performed to compare the fluoride release pattern and compressive strength of recently developed resin-modified glass ionomers($Ketac^{TM}$ N 100 and Fuji Fil LC) with those of conventional glass ionomer restorative material(Fuji II LC). Fifteen sample discs(6 mm diameter and 1 mm height) were prepared for each tested material. The fluoride release was measured by pH/ISE meter(750P, Istek, Korea) for 31 days. For compressive strength experiment, fifteen cylindrical specimens were prepared for each tested material. Each specimen was submitted to compressive strength testing in an universal testing machine(Kyung-sung Testing Machine Co., Korea) at crosshead speed of 5.0mm/min until failure. The results can be summarized as follows; 1. Fuji Fil LC released the highest amount of fluoride, followed by Fuji II LC and $Ketac^{TM}$ N 100(p<0.05). 2. The compressive strength of Fuji Fil LC was the lowest(p<0.05). However, no significant difference was found from Fuji II LC and $Ketac^{TM}$ N 100(p>0.05). By considering the above results, careful case selection and accurate clinical application is recommended when using $Ketac^{TM}$ N 100 and Fuji Fil LC.

  • PDF

Experiment for the Performance Improvement of Eco House Provided by Habitat for Humanity Nepal(HfH_Nepal) - Case Study of Terai Plain Region, Nepal - (네팔 해비타트(HfH_Nepal) 생태주택 보급현황과 성능개선실험 연구 - 떠라이 평원지역을 중심으로 -)

  • Leem, Youn Taik
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.103-112
    • /
    • 2013
  • The Federal Democratic Republic of Nepal(Nepal) is one of the poorest country in the world. People in Nepal are having lots of housing problems including the lack of housing provision. Even Habitat for Humanity Nepal (HfH_Nepal) has developed various programs to diffuse ecological housing, still there are many problems due to financial and technological shortage. The purpose of this study is to verify the effects of suggestion of performance improvement for HfH_Nepal eco house with introduction of the housing situation and efforts to provide sustainable housing by HfH_Nepal in Terai plain. Ideas on CGI sheet roof with poor insulation, double panel bamboo wall and adobe brick wall which can overcome structural and waterproof flaws of the thin single panel bamboo wall. The experiment result shows that both ideas adapted to adobe brick house reduces daily temperature range 50.8% and humidity adjust effect. For the effective provision of adobe brick house, compressive strength was tested for the bricks made with locally available fiber materials. Brick with jute displayed 41.1% betterment than plain brick with closest packing condition while coconut and straw showed 25.1% and 7.9% improvement respectively. Technical and economic problems brought up during the building and experiment process were listed and countermeasures established. This kinds of building prototype houses and experiments can improve the living conditions of people in developing countries with little supplement of resources. Furthermore, consideration of locally available and affordable material can help the social and ecological sustainability in the world.

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.