• Title/Summary/Keyword: Compressive Strength Experiment

Search Result 613, Processing Time 0.026 seconds

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.

A Study on the Correlation between Cement Chlorine Content and Concrete Slump, Compressive Strength (시멘트 염소 함량과 콘크리트의 슬럼프, 압축강도 간의 상관관계 연구)

  • Kyoung-Seok Kim;Dong-Kyun Seo;Ji-Wan Woo;Jae-Won Choi;Byeong-Know You
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.143-151
    • /
    • 2024
  • This study was analyzed the relationship between concrete slump, compressive strength and other factors such as the quantity of chloride or others using statistics method. The amount of chloride in cement was selected to range from 236 to 794 ppm, and cement that satisfied the KS L 5201 standard for other physical properties was used for this experiment. As a result, no factors had a interrelationship for initial slump and the strong-negative correlation between concrete slump elapsed time and the quantity of chloride. The proportion of chloride was shown as a strong-positive correlation for compressive strength from 1-day to 7-day curing. However, there was no correlation between chloride and compressive strength at 28-day curing.

A Study on Early-strength Development of Concrete Using Accelerating AE Water Reducing Agents for the Estimation of Optimum Duration (촉진형 AE감수제를 사용한 콘크리트의 최적공기산정을 위한 조기강도 발현 특성 연구)

  • Lee, Joo-Hun;Sa, Soon-Heon;Ji, Suk-Won;Jeon, Hyun-Gyu;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.91-94
    • /
    • 2006
  • The way to shorten a construction period is considered to an very important technology development element as reducing the formwork removal periods with promoting strength revelation own concrete. This study executed experiment to review usability of early strength revelation chemical admixture which is judged in ways effective with premature removal of form about concrete. Use of early strength revelation AE water reducin admixture is apperaing so that strength revelation by early hydration promotions is excellent. The results of being applied proposed work process are that compressive strength are appeared more than 5MPa within 16 hours so that removal of vertical form was possible. the concrete compressive strength satisfied with a more than 2/3 of specified concrete strength for removal of horizontal form are appeared in 42 hours of 27 MPa proportioning strength, in 36 hours of 30, 35 MPa proportioning strength so that the 6 days cycle time of concrete structural frame work is cut by 2 days as shortening delayed period in works of removing slab forms. So construction cost reductions and a construction period shortening are judged so that it is possible.

  • PDF

A Fundamental Study on the Strength Development in Cement Mortar under Initial Curing Temperature (초기양생온도에 따른 시멘트 모르터의 강도발현에 관한 기초적 연구)

  • 백민수;이영도;임남기;김성식;이종균;최문식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.157-165
    • /
    • 1997
  • In this experiment, there is a purpose to analysis the relationship of feature of compressive strength after fixing of remarkable element under the condition of initial curing temperature. According to this experiment, we get to the fallow result. In case of highest curing temperature, 3-day-strength become high but last revelation of strength become low among the condition of initial curing temperature, the highest curing temperature have an effect on revelation of strength by the application of cumulative temperature, we can get the shape of revelation of strength.

  • PDF

A Study On the Mix Design and Quality Control System of High Strength Concrete for the Construct ion of High Rise Complex Structure (초고층 주상복합구조물에 적용한 고강도 콘크리트의 배합설계 및 품질관리 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.40-45
    • /
    • 2001
  • The purposes of this study were mix design and quality control of high strength concrete for the construction of high rise complex structure. Desired performances of this high strength concrete were slump flow 50$\pm$10cm, air content 4.5$\pm$1.5% and design strength 400kgf/$cm^2$. Experimental flow was that optimal mix design was selected in the indoor experiment and after that, producing test was done in the batcher plant. Excel lent results of experiment was obtained from binder content 475kg/$m^2$ with replacement ratio 10% of fly ash. The results of field application of high strength concrete was sufficiently satisfied both flowability and compressive strength.

  • PDF

A Study on the Void Ratio and Permeability Coefficient Properties of fiber Reinforced Porous Concrete (섬유보강 포러스 콘크리트의 공극률과 투수계수 특성에 관한 연구)

  • Kim, Jeong-Hwan;Cho, Gwang-Yoen;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.677-682
    • /
    • 2000
  • Porous concrete is defined as d type of concrete for which the fine aggregate component the matrix is entirely omitted. Although it had been used as a building material in Europe for over 60 years, low strength and high void ratio limited its application in the past. In recent years, however high void ratio of concrete has been recognized again and can be used as an environmental conscious material, for example, parking lots, draining light-traffic-volume pavements and as sea water purifying material. The result of an experiment on the void ratio of fiber reinforced porous concrete and its influence on the compressive strength and permeability relationship of concrete are reported in this paper. One-sized coarse aggregate of 5-10mm, and three absolute content of fiber(steel fiber, polyprophylen fiber) were used. The result of measured void ratio, permeability coefficient and compressive strength show a small variation. Void ratio, permeability coefficient and compressive strength of fiber reinforced porous concrete depend on contents of fiber and absolute volume ratios of paste to aggregate.

  • PDF

Strength Characteristics of Concrete Using Superplasticizer content of Waste Concrete Powder (폐콘크리트 미분말을 활용한 콘크리트의 감수제 함유량에 따른 강도특성(PNS계 혼화제))

  • Park, Shin-Woo;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.103-104
    • /
    • 2015
  • This study is an experiment about what affects the compressive strength by using a reducing agent (PNS based admixtures) to play cement using the cement paste based Waste Concrete Powder of waste concrete, which accounts for more than 60% of construction waste around the latest domestic and international It was. Securing the replacement of cement with Waste Concrete Powder and, by varying the admixture was to compensate for the low absorption of liquidity and obtain a fine powder. And the experiment was conducted with a constant water cement ratio and aggregate usage for the purpose of lowering the water cement ratio promoting strength development. When substituted with the experimental results of 0.3% based on 3 ~ 28 days as strength 36Mpa exhibited the highest strength.

  • PDF

A Study on Construction Quality Inspection of Field use Concrete (현장 타설용 콘크리트의 시공품질 검토를 위한 연구)

  • 김민석;강병훈;강태경;박선길;이종균;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1057-1062
    • /
    • 2000
  • The purpose of this study is to practice the method which can estimate 28-days strength of concrete in advance. This method is made for reliant quality control. Based on existing experiment, concrete that flyash added and normal concrete are placed into wall structure, and it is examined the difference between experiment use concrete and field use concrete. The result of this study are as follows : 1) Core test specimen have 10% lower strength to standard curing specimen. 2) At 28-days accelerated strength by microwave, average 35% in normal concrete, average 23% in flyash added concrete. 3) At coefficient of determination between compressive strength and accelerated strength, 0.84 in normal concrete core, 0.86 in standard curing normal concrete, 0.86 in flyash added concrete, 0.90 in standard curing flyash added concrete.

The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment (Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향)

  • Song, Jun-Hyouk;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)

A Study on the Concrete Compressive Strength Characteristics mixing Stone Dust Produced by Stone Block Manufacturing (석재(石材) 가공(加工)시 발생한 석분(石粉)이 혼합된 콘크리트의 압축강도(壓縮强度) 특성(特性)에 관한 연구)

  • Chae, Young-Suk;Min, In-Ki;Song, Gab-Young
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.46-53
    • /
    • 2009
  • The stone dusts produced during the manufacturing process of stone blocks are considered as one of industrial waste materials. This stone dusts are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone dust disposal like burying or stacking also cause environmental pollution such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling stone dusts as a concrete mixing material in order to extend recycling methods. Based on the experiment results on various ratios of cement to stone dust content, the compressive strengths of concrete were recorded in the range of $20{\sim}30\;N/mm^2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone dusts produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.