• Title/Summary/Keyword: Compressive Strength Experiment

Search Result 613, Processing Time 0.024 seconds

A Study on the Mix Design of Early Strength Concrete using Admixture (혼화제를 이용한 조강콘크리트 배합설계에 관한 연구)

  • Park, Young-Shin;Nam, Sung-Woo;Park, Jae-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.69-72
    • /
    • 2005
  • In this study, it is contents to application on AE water reducing admixture for high early strength, which reduce to construction period for cost down in construction. In experiment result on the kinds of AE water reducing admixture for concrete strength promotion, when passed 60 minutes, while it was happened on lignin and naphthalene system about $30\∼35\%$ that loss related to slump, slump flow and air, but happened about $8\∼10\%$ on polycarboxylic system. And the result of compressive strength tests, when 32 hours passed in polycarboxylic system than lignin and naphthalene system, was showing an increase of 10$\%$. Accordingly, concrete properties was measured to condition change by the addition amount and curing temperature of polycarboxylic system. The required curing temperature to gain 5MPa of compressive strength, which is capable of side form stripping, must keep more than smallest 12. 5$^{circ}C$ when polycarboxylic system is used. As a result, AE water reducing admixture of polycarboxylic system may apply effectively to high early strength concrete

  • PDF

An Experimental Study on the Characteristics of Strength in Mortar under High Temperature conditions in an Early Age (초기 고온이력을 받은 시멘트 모르타르의 강도 특성에 관한 실험적 연구)

  • Kim Young Joo;Kim Han Sik;Gong Min Ho;Kim Je Sub;Lee Young Do;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.517-520
    • /
    • 2005
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

Cost optimization of high strength concretes by soft computing techniques

  • Ozbay, Erdogan;Oztas, Ahmet;Baykasoglu, Adil
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.221-237
    • /
    • 2010
  • In this study 72 different high strength concrete (HSC) mixes were produced according to the Taguchi design of experiment method. The specimens were divided into four groups based on the range of their compressive strengths 40-60, 60-80, 80-100 and 100-125 MPa. Each group included 18 different concrete mixes. The slump and air-content values of each mix were measured at the production time. The compressive strength, splitting tensile strength and water absorption properties were obtained at 28 days. Using this data the Genetic Programming technique was used to construct models to predict mechanical properties of HSC based on its constituients. These models, together with the cost data, were then used with a Genetic Algorithm to obtain an HSC mix that has minimum cost and at the same time meets all the strength and workability requirements. The paper describes details of the experimental results, model development, and optimization results.

A Study on the Dynamic Properties of Cement Mortar with Recycled PET Fiber (폐PET섬유를 혼입한 시멘트모르터의 역학적 특성에 관한 연구)

  • Kim, Young-geun;Kim, Sang-cheol;Kim, Myung-hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.113-122
    • /
    • 2002
  • In this study we intended to investigate properties of cement mortar with recycled PET fiber, PE fiber. and PP fiber such as slump flow, compressive strength, tensile strength, and flexural strength. At results of experiment. several properties of specimen with recycled PET fiber were little low comparing those of specimen with PE fiber and PP fiber. But if we see from point of economy and recycle of industrial wastes, it has enough reason to be used. Compressive strength of specimen with recycled PET fiber at 55 days was about 10% higher. but tensile strength and flexural strength were lower than that of no-fiber.

An Experimental Study on the Characteristics of Strength in Mortar under High Temperature conditions in an Early Age (모르터 압축강도 특성에 영향을 미치는 고온이력에 관한 실험적 연구)

  • Kim Young Joo;Gong Min Ho;Song In Myung;Yang Dong Il;Paik Min Su;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.703-706
    • /
    • 2004
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

An Experimental Study on Relation between compressive strength and Shear Wave velocity for characteristics of coarse aggregate size and type of cement (굵은 골재 최대치수 및 시멘트 종류에 따른 압축강도와 전단파 속도의 상관관계에 대한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-IL;Nam, Jeong-Hee;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.169-175
    • /
    • 2011
  • Strength is one of the very important factors to evaluate the physical properties of concrete. Aggregate forms the most parts in concrete. Cement as a binder in concrete is also closely related to strength. This experiment was tested to understand the effect of the characteristics of aggregate and cement on the relationship between concrete compressive strength and Shear Wave velocity. It was experimented by the different types of cement and maximum coarse aggregate sizes. Type I cement and rapid setting cement was used. Aggregates from three different regions were used. Aggregate of 19mm and 13mm maximum coarse aggregate sizes was used for grading. The relationship between compressive strength and Shear Wave velocity was tested under the condition of same mixture. LA wear test was used to quantify the characteristics of aggregate. As a result, the relationship between concrete compressive strength and Shear Wave velocity was affected by the types of cement, but regular relationship was appeared regardless of types of aggregate, grading and abrasion ratio.

Mix design and early-age mechanical properties of ultra-high performance concrete

  • Tang, Chao-Wei
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.335-345
    • /
    • 2021
  • It is known from the literature that there are relatively few studies on the engineering properties of ultra-high performance concrete (UHPC) in early age. In fact, in order to ensure the safety of UHPC during construction and sufficient durability and long-term performance, it is necessary to explore the early behavior of UHPC. The test parameters (test control factors) investigated included the percentage of cement replaced by silica fume (SF), the percentage of cement replaced by ultra-fine silica powder (SFP), the amount of steel fiber (volume percent), and the amount of polypropylene fiber (volume percentage). The engineering properties of UHPC in the fresh mixing stage and at the age of 7 days were investigated. These properties include freshly mixed properties (slump, slump flow, and unit weight) and hardened mechanical properties (compressive strength, elastic modulus, flexural strength, and splitting tensile strength). Moreover, the effects of the experimental factors on the performance of the tested UHPC were evaluated by range analysis and variance analysis. The experiment results showed that the compressive strength of the C8 mix at the age of 7 days was highest of 111.5 MPa, and the compressive strength of the C1 mix at the age of 28 days was the highest of 128.1 MPa. In addition, the 28-day compressive strength in each experimental group increased by 13%-34% compared to the 7-day compressive strength. In terms of hardened mechanical properties, the performance of each experimental group was superior to that of the control group (without fiber and without additional binder materials), with considerable improvement, and the experimental group did not produce explosive or brittle damage after the test. Further, the flexural test process found that all test specimens exhibited deflection-hardening behavior, resulting in continued to increase carrying capacity after the first crack.

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.

Experimental Study on the Strength of Concrete Specimens Mixed with Tire Chips (폐타이어 입자혼입 콘크리트의 강도별 특성 실험)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.84-90
    • /
    • 2005
  • This study is to use results of the experiment on the influence to the strength by mixing powders of wasted tires into regular remicon within a range of little effectiveness in durability, applicability, economic aspect, and workability, to put it to practical use and to apply as basic data from a view of recycling wasted tires as construction materials. And the concrete, which was mixed with 10mm particles with ratio of $0.5\%\;and\;1.0\%$ respectively at 270 of mixing strength, was reduced by $27\%$ in compressive strength compared to normal concrete, whereas concrete mixed with other than 10mm particles showed lower decrease ratio compared to the former by reducing only $1.0\%\~1.5\%$. it is found that as strength increases, the less in quantity of aggregate and the more increase in quantity of cement. When considered to the above result, it is estimated that concrete mixed with wasted tire particles could be better used in conditions of compressive force rather than tensile force, and could also be used for structures with flexural strengths as well. In conclusion, higher strengths could be made using waste tire mix.

EIS Properties of Lightweght Aggregate According to Surface Coating (표면 코팅 유무에 따른 경량골재의 EIS 특징)

  • Pyeon, Myeong-Jang;Jeong, Su-Mi;Kim, Ju-Sung;Kim, Ho-Jin;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.107-108
    • /
    • 2022
  • In recent years, the construction industry has a tendency to increase of high-rise builidngs. High rise buildings can use limited space efficiently. But High rise buildings have problem that have extremely heavy weight. Various studies are being conducted to reduce the weight of buildings. Although lightweight aggregate is a meterial that can effectively reduce the weight of buildings, the strength of the aggregate itself is weak and the absorption rate is high, so the strength of the ITZ(Interfacial Transition Zone) area is weak. Therefore, it is essential to improve the interfacial area when using lightweight aggregates. In this study, an experiment was conducted to improve the adhesion between the aggregate and cement paste and to strengthen the interfacial area by coating the surface of the lighteight aggregate with Blast Furnace Slag. To confirm the improvement, compressive strength and EIS(Electrochemical Impedance Spectroscopy) measurements were perfromed. Using EIS, the change in electrical resistance of the cement hardened body was confirmed. As a result, it was confirmed that the lightweight aggregate coated on the surface showed highter compressive strength and electrical resistance than the non-coated lightweight aggregate, and that the coating material was filled in the interfacial area and inside the aggregate that helped to strengthen the compresssive strength and higher electrical resistance.

  • PDF