• Title/Summary/Keyword: Compressive Modulus

Search Result 890, Processing Time 0.03 seconds

A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs (PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.

Fabrication and Characterization of the Ti-TCP Composite Biomaterials by Spark Plasma Sintering

  • Mondal, Dibakar;Park, Hyun-Kuk;Oh, Ik-Hyun;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Ti metal has superior mechanical properties along with biocompatibility, but it still has the problem of bio-inertness thus forming weaker bond in bone/implant interface and long term clinical performance as orthopaedic and dental devices are restricted for stress shielding effect. On the other hand, despite the excellent biodegradable behavior as being an integral constituent of the natural bone, the mechanical properties of ${\beta}$-tricalcium phosphate $(Ca_3(PO_4)_2;\;{\beta}-TCP)$ ceramics are not reliable enough for post operative load bearing application in human hard tissue defect site. One reasonable approach would be to mediate the features of the two by making a composite. In this study, ${\beta}$-TCP/Ti ceramic-metal composites were fabricated by spark plasma sintering in inert atmosphere to inhibit the formation of $TiO_2$. Composites of 30 vol%, 50 vol% and 70 vol% ${\beta}$-TCP with Ti were fabricated. Detailed microstructural and phase characteristics were investigated by FE-SEM, EDS and XRD. Material properties like relative density, hardness, compressive strength, elastic modulus etc. were characterized. Cell viability and biocompatibility were investigated using the MTT assay and by examining cell proliferation behavior.

  • PDF

A Study on the Change of Conservation Materials Properties Using Artificial Weathering Test (인공풍화 실험을 이용한 보존처리제의 물성 변화 연구)

  • Do, Min-Hwan;Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Song, Chi-Young
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.149-162
    • /
    • 2008
  • Because stone cultural heritages in Korea are mostly situated outdoors without any notable protection, there are severe damages from physical, chemical and biological weathering. And this in turn causes deformation and structural damage. To counteract this problem and increase durability, various kinds of conservation materials are used in the conservation and restoration treatment. However, there are not many practical and technological experiments on this subject. Accordingly this research is for analysis of effect for treatment to make use a resin of the ethyl silicate for the granite in Mt. Nam of Gyeongju. It takes a long time to confirm the test result regarding durability and side effects of the conservatives after treatment. So we built up an artificial environment through freezing and melting test, and evaluated the conservation materials. As a result of this experiment, porosity and absorptivity was increased in accordance with processing of freezing and melting test. But other things such as elastic wave speed, elastic modulus, uniaxial compressive strength and tensile strength was decreased. It will make a plan to form a method of research systematically for mechanism and element of weathering and to elicit a correlation among experiment of artificial weathering and practical natural weathering from next research.

  • PDF

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray (초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구)

  • Lee, J.C.;Ahn, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Development of Concrete Material Models for Performance-Based Design Code (성능기반 설계기준 작성을 위한 콘크리트 재료모델의 개발)

  • Kim, Jee-Sang;Lee, Kwang-Myung;Choi, Yeon-Wang;Jung, Sang-Hwa;Moon, Jae-Heum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.975-978
    • /
    • 2008
  • To strengthen the technological competitiveness of the construction market in Korea, researches have been performed to replace the prescriptive design codes (PD) to the performance-based ones (PBD). As one of the basic requirements for PBDs, development of the optimized concrete material models for domestic applications have been tried by comparing and verifying the pre-existing models with the observations and quality evaluations of ready mixed concretes that are used in the domestic market. This paper shows the summary of the present state of the research progress in the areas of compressive strength and elastic modulus.

  • PDF

Degradation of Ion-exchange Soda-lime Glasses Due to a Thermal Treatment (이온강화 소다라임 유리의 열처리에 따른 강화 풀림현상)

  • Hwang, Jonghee;Lim, Tae-Young;Lee, Mi Jai;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recently, the use of ion-exchange strengthened glass has increased sharply, as it is now used as the cover glass for smart phone devices. Therefore, many researchers are focusing on methods that can be used to strengthen ion-exchange glass. However, research on how the improved strength can be maintained under thermal environment of device manufacturing is still insufficient. We tested the degradation of the characteristics of ion-exchange soda-lime glass samples, including their surface compressive stress characteristics, the depth of the ion-exchange layer (DOL), flexural strength, hardness, and modulus of rupture (MOR) values. Degradation of the characteristics of the ion-exchange glass samples occurred when they were heat-treated at a temperature that exceeded $350^{\circ}C$.

Preparation and Properties of ρ-alumina Bonded Alumina Vibrated Castable Refractory (진동성형용 ρ-알루미나결합 알루미나 캐스터블 내화재료의 제조와 특성)

  • 천승호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.791-797
    • /
    • 2003
  • The special binding mechanism developed provides higher density, lower porosity and higher strengths compared with conventional castables. $\rho$-alumina was employed as a binder materials and nano-sized clay colloidal was added to enhance the drying strength preparing for the alumina vibrated castable. Lower water requirement for casting results in a denser product. The mechanical properties with dimensional stability and corrosion resistance behaviors have been improved by controlling the matrix compositions of the castable. The modulus of rupture and compressive strength after heat treatment at 150$0^{\circ}C$ are 92.34 kgf/$\textrm{cm}^2$ and 370 kgf/$\textrm{cm}^2$ respectively. The activation energy of mullite formation is 11.47 kcal/mol.

STRESS ANALYSIS WITH NONLINEAR MODELLING OF THE LOAD TRANSFER CHARACTERISTICS ACROSS THE OSSEOINTEGRATED INTERFACES OF DENTAL IMPLANT

  • Lee Seung-Hwan;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.267-279
    • /
    • 2004
  • A modelling scheme for the stress analysis taking into account load transfer characteristics of the osseointegrated interfaces between dental implant and surrounding alveolar bone was investigated. Main aim was to develop a more realistic simulation methodology for the load transfer at the interfaces than the prefect bonding assumption at the interfaces which might end up the reduced level in the stress result. In the present study, characteristics of osseointegrated bone/implant interfaces was modelled with material nonlinearity assumption. Bones at the interface were given different stiffness properties as functions of stresses. Six different models, i.e. tens0, tens20, tens40, tens60, tens80, and tens100 of which the tensile moduli of the bones forming the bone/implant interfaces were specified from 0, 20, 40, 60, 80, and 100 percents, respectively, of the compressive modulus were analysed. Comparisons between each model were made to study the effect of the tensile load carrying abilities, i.e. the effectivity of load transfer, of interfacial bones on the stress distribution. Results of the present study showed significant differences in the bone stresses across the interfaces. The peak stresses, however, were virtually the same regardless of the difference in the effectivity of load transfer, indicating the conventional linear modelling scheme which assumes perfect bonding at the bone/implant interface can be used without causing significant errors in the stress levels.

Strength characteristics of cemented sand of Nak-dong river (낙동강유역 시멘트혼합토의 강도특성)

  • Kim, Young-Su;Jeong, Woo-Seob;Kim, Ki-Young;Lee, Sang-Woong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.808-817
    • /
    • 2006
  • There were huge damages of human beings and their properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized downpour recently. In this research against disasters, we want to know the special quality of strength of the cemented sand that is mixed with cement and poor-graded sand which is the materials of riverbed in the basin of the Nak-Dong river as levee's material. For that, we want to provide the fundamental data which need in the examination of adaptation of levee's material, design and analysis by investigating compressive strength by curing period and cement ratio, elastic modulus and stress by transformation from compaction test, CBR test, unconfined compression test, triaxial compression test as changing ratio of sand and cement from 2% to 8% at two points in the basin of the Nak-Dong river.

  • PDF