• Title/Summary/Keyword: Compressive Failure

Search Result 895, Processing Time 0.026 seconds

Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plates (세라믹/금속판재의 고속충돌 파괴 유한요소 병렬 해석기법)

  • Moon, Ji-Joong;Kim, Seung-Jo;Lee, Min-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper simulations for the impact into ceramics and/or metal materials have been discussed. To model discrete nature for fracture and damage of brittle materials, we implemented cohesive-law fracture model with a node separation algorithm for the tensile failure and Mohr-Coulomb model for the compressive loading. The drawback of this scheme is that it requires a heavy computational time. This is because new nodes are generated continuously whenever a new crack surface is created. In order to reduce the amount of calculation, parallelization with MPI library has been implemented. For the high-speed impact problems, the mesh configuration and contact calculation changes continuously as time step advances and it causes unbalance of computational load of each processor. Dynamic load balancing technique which re-allocates the loading dynamically is used to achieve good parallel performance. Some impact problems have been simulated and the parallel performance and accuracy of the solutions are discussed.

A Micro-observation on the Wing and Secondary Cracks Developed in Gypsum Blocks Subjected to Uniaxial Compression (일축압축상태의 석고 실험체에서 발생하는 날개크랙과 이차크랙에 대한 미시적 관측)

  • 사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2003
  • Wing and secondary cracks are unique types of cracks observed in rock masses subjected to uniaxial and biaxial compressive loading conditions. In this study, morphological features of wing and secondary cracks developed in gypsum specimens are investigated in the macro and micro scales. Along the path of wing crack, microtensile cracks are observed. Microtensile cracks coalesce with pores and show branch phenomenon. From the onset of the wing crack, multiple initiations of microtensile cracks are observed. Microtensile cracks show tortuous propagation paths and relatively constant aperture of the cracks during the propagation. It is shown that microtensile cracks propagate by splitting failure. At the micro scale, microfsults are observed in the path of the secondary cracks. Along the path of the secondary cracks, separation of grains and conglomerate grains, oblique microfaults, and irregular aperture of microfault are observed. These features show that the secondary cracks are produced in shear mode. The measured sizes of fracture process zone across the propagation direction near the tip of wing and secondary cracks range from 10$\mu{m}$ to 20$\mu{m}$ far wing cracks and from 100$\mu{m}$ to 200$\mu{m}$ for secondary cracks, respectively.

Estimation of Flexural and Shear Strength for Steel Fiber Reinforced Flexural Members without Shear Reinforcements (전단보강이 없는 강섬유보강 콘크리트 휨부재의 휨 및 전단강도의 평가)

  • Oh, Young-Hun;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.257-267
    • /
    • 2008
  • Results of seventy-seven specimens tested by this study and previous research were collected and evaluated to propose the flexural strength and shear strength for flexural members with steel fiber concrete. For strength evaluation, structural parameters such as compressive strength, steel fiber content, tensile reinforcement ratio, and shear span to effective depth ratio are involved. The proposed equations for flexural and shear strength are regarded to give a good prediction for the strength of steel fiber reinforced composite and/or RC beams to compare with equations by previous researchers. Especially, the proposed shear strength equation in this study shows the lowest the mean value, the coefficient of variation and the error ratio among predictions by several equations. Therefore, equations for shear strength and flexure strength, which are proposed in this study are to be useful measure to predict the actual behavior and failure mode of steel fiber reinforced composite beams.

Theoretical analysis for determation of allowable free span of subsea pipeline (해저 배관의 허용 노출길이 산정에 대한 이론해석)

  • Jung Dong-Ho;Lee Yong-Doo;Park Han-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.54-62
    • /
    • 2003
  • The free span of a subsea pipeline due to seabed scouring can result in structural failure by severe ocean environmental loads and vortex induced vibrations. This Paper examines the safety of subsea pipelines with free spans under axial compressive load. The variation of allowable lengths of static and dynamic free spans is examined for generalized boundary conditions. The free span is modelled as a beam with an elastic foundations and the boundary condition is replaced by linear and rotational springs at each end. The static and dynamic free span curves are obtained with a function of non-dimensional parameters. A case study is carried out to introduce the application method of the curve. The results of this study can be usefully applied for the design of subsea pipelines with a free span.

  • PDF

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.

Application of Fracture Toughness for Scaled Model Test (파괴인성의 축소모형실험 적용 연구)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2020
  • Fracture toughness of rock is a constant that can indicate the initiation and propagation of cracks due to blasting, excavation, etc. Scaled model tests have been applied to the behavior of tunnels and the stability of limestone mines. Through the scaled model, damaged zone evaluation due to blasting is also carried out, and the scale factor is not applied to the failure-related factors. In this study, DCT (diametral compression test) and finite element method ATENA2D numerical analysis results were compared to determine whether the scale factor could be applied to the fracture toughness of rock. The theoretical values of the scale factor applied to the fracture toughness of the rock and the DCT test results and the numerical results are 0.21~0.46, 0.40, and 0.99MPa ${\sqrt{m}}$ respectively, so these three values should be considered when determining scale factor. It is necessary to derive a suitable scale factor in consideration of the length, time, and mass to which the scale factor is applied, as well as the values of the scale factor of major design factors such as uniaxial compressive strength and density.

In-plane Bending Moment Capacity of T-Joints in the Circular Hollow Section of New High Strength Steel Subjected to Cyclic Loadings (반복하중을 받는 고강도 원형강관의 T형 접합의 면내 휨모멘트 내력)

  • Lee, Sung-Ju;Kim, Joo-Woo;Kim, Sang-Seup;Lee, Myung-Jae;Yang, Jae-Geun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • This paper presents the results of the systematic finite element analysis of the in-plane bending moment of T-joints subjected to cyclic loadings. T-joints were fabricated using high-strength, circular, hollow sections. Three-dimensional, nonlinear finite element models of the welded T-joints were constructed to investigate the strength, rotational-stiffness characteristics, and failure modes. A wide scope of structural behaviors explain the influence of the joint geometric parameters, such as the chord and brace wall slenderness ratios and the ratio of the brace to the chord diameter, as well as the yield strength ratios and compressive-chord-stress effects on the ultimate in-plane bending moment capacity of the T-joint.

Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholam Reza;Narmashiri, Kambiz
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • In past years, numerous problems have vexed engineers with regard to buckling, corrosion, bending, and overloading in damaged steel structures. This article sets out to investigate the possible effects of carbon fiber reinforced polymer (CFRP) and steel plates for retrofitting deficient steel square hollow section (SHS) columns. The effects of axial loading, stiffness, axial displacement, the position and shape of deficient region on the length of steel SHS columns, and slenderness ratio are examined through a detailed parametric study. A total of 14 specimens was tested for failure under axial compression in a laboratory and simulated using finite element (FE) analysis based on a numerical approach. The results indicate that the application of CFRP sheets and steel plates also caused a reduction in stress in the damaged region and prevented or retarded local deformation around the deficiency. The findings showed that a deficiency leads to reduced load-carrying capacity of steel SHS columns and the retrofitting method is responsible for the increase in the load-bearing capacity of the steel columns. Finally, this research showed that the CFRP performed better than steel plates in compensating the axial force caused by the cross-section reduction due to the problems associated with the use of steel plates, such as in welding, increased weight, thermal stress around the welding location, and the possibility of creating another deficiency by welding.

Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites

  • Zaheer, Mohd Moonis;Jafri, Mohd Shamsuddin;Sharma, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.207-215
    • /
    • 2019
  • Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.