• 제목/요약/키워드: Compressive Failure

검색결과 887건 처리시간 0.022초

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • 제4권4호
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

공간적으로 보강된 복합재료의 강도예측 (Strength Prediction of Spatially Reinforced Composites)

  • 유재석;장영순;이상의;김천곤
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.39-46
    • /
    • 2004
  • 본 연구에서는 공간적으로 보강된 복합재(SRC)의 강도를 예측하였다. 각 방향의 라드(rod)와 라드의 체적에 비례하는 기지의 강성으로 표현되는 구조요소(structural element)를 정의하고, 이 구조요소에 파손판단식을 적용하여 SRC의 강도를 예측하였다. 라드의 파손판단식의 경우는 최대파손변형률을, 기지의 경우는 수정된 Tsai-Wu 파손판단식을 각기 적용하였다. 또한 SRC의 강도를 예측하기 위해서 라드와 SRC의 물성치를 측정하였다. 측정된 물성치는 라드의 인장 파손변형률, 3D SRC의 압축 파손변형률, $45^{\cir}$ 회전된 방향에서의 인장 및 압축 강도와 전단강도들이다. 3D/4D SRC의 강도분포는 각 SRC의 라드방향에서 크게 나타나고 라드에서 벗어날수록 작은 강도 값을 보였다. 강도의 전체분포를 보다 빠르게 계산하기 위해서 하중증분을 유동적으로 사용하였고, 하중이력을 구할 때는 균일한 하중이력을 사용하였다. 3D SRC의 라드방향 압축실험결과 해석의 비교에서 초기 기울기는 서로 잘 일치하였고, 강도값은 18% 정도의 차이를 보였다.

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구 (Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete)

  • 최윤철
    • 콘크리트학회논문집
    • /
    • 제25권5호
    • /
    • pp.573-581
    • /
    • 2013
  • 이 논문은 강섬유보강콘크리트와 GFRP (glass fiber reinforced polymer)사이의 부착 특성을 조사하기 위한 실험적 연구를 수행하였다. 실험 주요 변수로는 보강근 지름, 섬유혼입량, 피복두께 및 콘크리트의 압축강도를 설정하였다. 부착파괴는 주로 콘크리트 피복에서의 쪼갬으로 인하여 유발되며, 이러한 콘크리트의 쪼갬파괴는 보강근과 콘크리트 사이의 변형 차이로 유발되는 인장력때문에 발생한다. 따라서, 보강근과 콘크리트 사이의 부착파괴를 방지하기 위하여, 콘크리트 피복부위의 인장강도를 향상시켜야 한다. 실험결과를 살펴보면, 섬유혼입량 증가는 부착강도를 크게 향상시키고 있으며, 피복두께는 최종 파괴모드를 변화시킴을 확인할 수 있었다. 보강근의 지름 또한 최종 파괴모드를 변화시킴을 확인할 수 있었다. 일반적으로 보강근의 지름은 부착특성에 영향을 미치는 것으로 알려져 있으나, 섬유혼입량은 부착특성에 큰 영향이 없는 것으로 알려져 있다. 콘크리트 압축강도의 증가는 보강근과 콘크리트 사이의 부착강도를 증가시켰으며, 이는 압축강도의 증가가 직접적으로 인장강도의 증가를 유발하기 때문이라고 판단된다.

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

FRP 보강 철근콘크리트 부재의 휨모멘트 (Moment Capacity of Reinforced Concrete Members Strengthened with FRP)

  • 조백순;김성도;백성용;최은수;최용주
    • 한국전산구조공학회논문집
    • /
    • 제23권3호
    • /
    • pp.315-323
    • /
    • 2010
  • FRP 보강단면의 공칭휨모멘트 산정에 강도설계법의 적용 타당성을 검토하기 위하여 5종류의 콘크리트 압축응력-변형률 모델을 적용하였으며, 컴퓨터 프로그램 언어를 이용하여 보강단면 휨해석을 실시하였다. 그 결과 보강단면의 휨해석에 콘크리트 압축응력-변형률 모델은 거의 영향을 미치지 않는 것으로 나타났다. 콘크리트 압축변형률이 0.003일 때, 휨해석으로 산정된 보강단면의 휨모멘트와 강도설계법으로 산정된 공칭휨모멘트는 거의 일치하는 것으로 나타났다. 그러나 보강단면의 인장철근비, FRP비, FRP 파단변형률, 콘크리트 압축변형률 등이 상대적으로 낮을수록, 강도설계법은 보강단면의 휨성능을 과대평가하는 것으로 해석결과에 나타났다.

The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression

  • Zhang, Bo;Li, Shucai;Yang, Xueying;Xia, Kaiwen;Liu, Jiyang;Guo, Shuai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.47-56
    • /
    • 2019
  • Crossing (X-type) flaws are commonly encountered in rock mass. However, the crack coalescence and failure mechanisms of rock mass with X-type flaws remain unclear. In this study, we investigate the compressive failure process of rock-like specimens containing two X-type flaws aligned in the loading direction. For comparison purposes, compressive failure behavior of specimens containing two aligned single flaws is also studied. By examining the crack coalescence behavior, two characteristics for the aligned X-type flaws under uniaxial compression are revealed. The flaws tend to coalesce by cracks emanating from flaw tips along a potential path that is parallel to the maximum compressive stress direction. The flaws are more likely to coalesce along the coalescence path linked by flaw tips with greater maximum circumferential stress if there are several potential coalescence paths almost parallel to the maximum compressive stress direction. In addition, we find that some of the specimens containing two aligned X-type flaws exhibit higher strengths than that of the specimens containing two single parallel flaws. The two underlying reasons that may influence the strengths of specimens containing two aligned X-type flaws are the values of flaw tips maximum circumferential stresses and maximum shear stresses, as well as the shear crack propagation tendencies of some secondary flaws. The research reported here provides increased understanding of the fundamental nature of rock/rock-like material failure in uniaxial compression.

Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures

  • Maykely Naara Morais Rodrigues;Kely Firmino Bruno;Ana Helena Goncalves de Alencar;Julyana Dumas Santos Silva;Patricia Correia de Siqueira;Daniel de Almeida Decurcio;Carlos Estrela
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.59.1-59.14
    • /
    • 2021
  • Objectives: This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods: Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results: Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions: Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.

온도상승에 의한 H-형강 압축재의 내력과 파괴온도에 관한 실험적 연구 (The Experimental Study on the Resistance Forces and the Failure Temperatures of H-Shaped Steel Compressive Members by Elevated Temperatures)

  • 최현식;강성덕;김재억
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.131-139
    • /
    • 2013
  • 본 연구의 목적은 H-형강 압축재의 온도상승에 따른 파괴거동을 중심으로 압축력과 파괴온도의 상관관계를 파악하기 위한 실험을 수행하는 것이다. SS400 강재로 제작된 H-형강의 시험체를 선정하여, ISO 834의 재하가열 시험방법에 따라 온도 상승에 대한 실험을 한국방재시험연구원(FILK)에서 수행하였다. 고온상태의 강재에 대한 항복강도 및 탄성계수의 감소계수는 EC3 (Eurocode3) Part 1.2 (1993) 관계식을 근거로 하여 파괴온도시 국부 및 전체좌굴 응력도와 항복응력도를 실험결과와 비교 검토하였다. 실험조건은 세장비 45.4이고 상온에서의 항복내력에 대한 50%, 70%, 80%를 재하압축력으로 설정하여 파괴온도를 측정하였다. 파괴온도와 재하압축력에 대한 실험결과로 부터 온도상승에 따른 내력은 탄성 좌굴강도보다는 항복내력에 근접함을 파악할 수 있었다.