• Title/Summary/Keyword: Compression load

Search Result 1,352, Processing Time 0.032 seconds

Development of Removable-Strand Compression Anchor (압축형 제거 앵커의 개발 및 성능 평가)

  • 김낙경;김성규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.339-346
    • /
    • 2001
  • For temporary excavation support in private land area, the strand of ground anchor should be removed In order to get permission to install anchors. The extractable or removable-strand compression anchor system was developed and evaluated by a series of pull-out load tests. Anchor pull-out tests were performed on seven instrumented full-scale low-pressure grouted anchors installed in weathered soil at the Geotechnical Experimentation Site at Sungkyunkwan University, Four anchors are the compression type anchors and three are the tension anchors. Performance test, creep test, and long term relaxation test were performed and presented. Load distributor was developed in order to distribute large compressive stresses in grout.

  • PDF

Theoretical study of sleeved compression members considering the core protrusion

  • Zhang, Chenhui;Deng, Changgen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.783-792
    • /
    • 2018
  • This paper presents a detailed theoretical study of the sleeved compression members based on a mechanical model. In the mechanical model, the core protrusion above sleeve and the contact force between the core and sleeve are specially taken into account. Via the theoretical analyses, load-displacement relationships of the sleeved compression members are obtained and verified by the experimental results. On the basis of the core moment distribution changing with the increase of the applied axial load, failure mechanism of the sleeved compression members is assumed and proved to be consistent with the experimental results in terms of the failure modes and the ultimate bearing capacities. A parametric study is conducted to quantify how essential factors including the core protrusion length above sleeve, stiffness ratio of the core to sleeve, core slenderness ratio and gap between the core and sleeve affect the mechanical behaviors of the sleeved compression members, and it is concluded that the constrained effect of the sleeve is overestimated neglecting the core protrusion; the improvement of ultimate bearing capacity for the sleeved compression member is considered to be decreasing with the decrease of the core slenderness ratio and for the sleeved compression member with core of small slenderness ratio, small gap and small stiffness ratio are preferred to obtain larger ultimate bearing capacity and stiffness.

Buckling of axial compressed cylindrical shells with stepwise variable thickness

  • Fan, H.G.;Chen, Z.P.;Feng, W.Z.;Zhou, F.;Shen, X.L.;Cao, G.W.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.87-103
    • /
    • 2015
  • This paper focuses on an analytical research on the critical buckling load of cylindrical shells with stepwise variable wall thickness under axial compression. An arctan function is established to describe the thickness variation along the axial direction of this kind of cylindrical shells accurately. By using the methods of separation of variables, small parameter perturbation and Fourier series expansion, analytical formulas of the critical buckling load of cylindrical shells with arbitrary axisymmetric thickness variation under axial compression are derived. The analysis is based on the thin shell theory. Analytic results show that the critical buckling load of the uniform shell with constant thickness obtained from this paper is identical with the classical solution. Two important cases of thickness variation pattern are also investigated with these analytical formulas and the results coincide well with those obtained from other authors. The cylindrical shells with stepwise variable wall thickness, which are widely used in actual engineering, are studied by this method and the analytical formulas of critical buckling load under axial compression are obtained. Furthermore, an example is presented to illustrate the effects of each strake's length and thickness on the critical buckling load.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Effect of Live Load Pattern on RC Flat Plate under In-Plane Compression (면내 압축력을 받는 플랫 플레이트에 대한 적재하중 분포의 영향)

  • 김재요;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.459-462
    • /
    • 1999
  • This paper presents a numerical study on the effect of live load pattern on RC flat plate under in-plane compression. Through the numerical study on various live load pattern, the load condition that governs the strength of the flat plate is determined. Effects of L.L/D.L. and arrangement of reinforcement on the behavior of the flat plate are also studied. And the efficient arrangement of reinforcement regarding to live load pattern is proposed.

  • PDF

Comparison between reinforced concrete designs based on the ACI 318 and BS 8110 codes

  • Tabsh, Sami W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.467-477
    • /
    • 2013
  • Municipalities in the United Arab Emirates approve reinforced concrete design of building structures to follow either the ACI 318 or the BS 8110 code. Since the requirements of these codes are different from each, there is a need to compare the structural demand in the two codes. The main objective of this study is to compare the design requirements of the ACI 318 code with the BS 8110 code for the flexural, shear and axial compression limit states. The load factors and load combinations in the two codes are also compared. To do so, a large number of cross-sections with different geometries, material properties, and reinforcement ratios are analyzed following the procedures in the two codes. The relevant factored load combinations in the two codes are also investigated for a wide range of live-to-dead load ratios and for various wind-to-dead load ratios. The study showed that the differences between the design capacities in the ACI 318 and BS 8110 codes are minor for flexure, moderate for axial compression, and major for shear. Furthermore, the factored load combinations for dead load, live load and wind in the two codes yield minor-to-moderate differences, depending on the live-to-dead load ratio and intensity of wind.

Compression strength performance of multi-layer glued columns by using square lumbers produced from domestic small diameter logs (국산 간벌 소경재를 이용한 다중접착접합 기둥부재의 압축강도성능)

  • Shin, Il-Joong;Kim, Yun-Hui;Jang, Sang-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.533-540
    • /
    • 2011
  • This study is to develop a mulit-layer glued columns for construction of Korean-style houses by using domestic small diameter logs. Dried small square lumber glued each other to develop a multi-layer glued columns and evaluated its performance of strength. Then, predicted the design load of multi-layer glued columns and make a comparison between actual load and design load of multi-layer glued columns. In the results, allowable load by allowable stress of multi-layer glued columns was measured one-third of actual columns load and prediction load was measured less than 10~30% of the actual load. Therefore, muilt-layer glued member has a standard allowable stress of compressive of 13 MPa (Larix leptolepis) and 19 MPa (Chamaecyparis obtusa) when used as columns. Also, using compression strength of small diameter square logs could calculate maximum loads of multi-layer glued member as column.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.

Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates (Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동)

  • 김진봉;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

Elastic Critical Load of Non-symmetrically Tapered Columns by Numerical Method (수치해석법에 의한 비대칭 변단면 기둥의 탄성 임계하중)

  • 신세욱;김선혜;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.11-18
    • /
    • 1999
  • For the proper design of a slender compression member, the exact determination of the elastic critical load is crucial, In the cases of non-prismatic compression members, the determinations of the elastic critical load cannot be usually expressed in closed forms. h this paper, the non-symmetrically tapered compression members with arbitrary boundary conditions me analysed by using the finite element method to determine the elastic critical load. The main parameters considered in the numerical analysis are the In Parameter, $\alpha$ and the sectional property parameter, m. To generaliza the unmerical analysis, of the computed results for each sectional parameter, m are presented in algebraic equations, which agrees fairy well with those by F.E.M in most cases.

  • PDF