• Title/Summary/Keyword: Compression load

Search Result 1,361, Processing Time 0.025 seconds

Buckling Analysis of Laminated Composite Cylindrical Shell under Combined Load State (복합하중상태에 있는 복합재료 원통형 쉘의 좌굴 거동)

  • Yeo, Kyoung-Su;Yang, Won-Ho;Cho, Myoung-Rae;Sung, Ki-Deug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.119-130
    • /
    • 1999
  • This paper deals buckling behavior of laminated composite cylindrical shells subjected to combination of axial compression and torison. Linear and nonlinear finite element analysis are carried out . the influence of load type, load ratio, fiber orientation angle, stacking sequence, and intial imperfect on buckling behavior is discussed.

  • PDF

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

Effects of Loading Conditions on Consolidation Beharion of the Soft Clay (하중조건이 연약초토의 압밀에 미치는 영향)

  • 강병희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2445-2455
    • /
    • 1971
  • One-dimensional Consolidation tests with pore pressure measurement were caried in the ANTE-US consolidometer in order to investigate the effects of loading conditions on consolidation behavior of the soft clay. Undisturbed specimens of a sensitive clay were loaded in load-increment ratioes 0.5, 1.0 and 2.0, and load increment duration of 1, 6, 12, 24 and 48 hours with the application of 40 psi of back pressure. There is no significant effect of load-increment ratio on compression-pressure relationship, but the test with one-hour load increment duration doesn't represent the same results of the standard consolidation test in the sensitive clay.

  • PDF

Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars (PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

Variable Length CAN Message Compression Using Bit Rearrangement (비트 재배열을 이용한 가변길이 CAN 메시지 압축)

  • Cho, Kyung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.51-56
    • /
    • 2011
  • In this paper, we propose a CAN message compression method using bit rearrangement to reduce the CAN bus load and the error probability during the transmission of CAN messages. In conventional CAN message compression methods, message compression is accomplished by sending only the differences between the previous data and the current data. In the proposed method, the difference bits are rearranged to further increase the compression efficiency. By simulations in car applications, it is shown that the CAN transmission data is further reduced up to 26% by the proposed method, compared with the conventional method.

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

The Effect of Repetitive Compression on the Fatigue Properties of Foam for Footwear Mid-sole (반복압축이 스포츠화용 발포체의 피로특성에 미치는 영향)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2005
  • To study the fatigue properties of three type of foams for footwear midsole, polyurethane(PU), phylon(PH) and injection phylon(IP) foams were prepared with different hardnesses. Three types of foams were repetitively compressed for 50,000 cycles at 50 rpm. Cell shapes of foams were deformed with repetitive compression. The extent of cell deformation of IP was larger than those of PH and PU. Permanent strain of foam was made by repetitively compressing the foam, and the extent of IP was larger than those of PU and PH. Maximum compression forces of three types of the foams were decreased with the repetitive compression, and IP had the largest decrease in compression load of foam with compression. Decreases in maximum compression force of three types of foams were increased with increase of the hardness of foam.

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load (차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발)

  • Kim, Jang-Ho Jay;Yi, Na-Hyun;Phan, Duc-Hung;Kim, Sung-Bae;Lee, Kang-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2010
  • Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.

Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading

  • Hegde, A.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.405-422
    • /
    • 2016
  • The paper deals with the results of the laboratory cyclic plate load tests performed on the reinforced soft clay beds. The performances of the clay bed reinforced with geocells and geocells with additional basal geogrid cases are compared with the performance of the unreinforced clay beds. From the cyclic plate load test results, the coefficient of elastic uniform compression ($C_u$) was calculated for the different cases. The $C_u$ value was found to increase in the presence of geocell reinforcement. The maximum increase in the $C_u$ value was observed in the case of the clay bed reinforced with the combination of geocell and geogrid. In addition, 3 times increase in the strain modulus, 10 times increase in the bearing capacity, 8 times increase in the stiffness and 90% reduction in the settlement was observed in the presence of the geocell and geogrid. Based on the laboratory test results, a hypothetical case of a prototype foundation subjected to cyclic load was analyzed. The results revealed that the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92% in the presence of the geocells and the geogrids.