• 제목/요약/키워드: Compression ignition

검색결과 324건 처리시간 0.02초

농용 석유기관의 LPG 이용에 관한 연구 (Study on the LP Gas as a Fuel for Farm Kerosene Engine)

  • 조기현;이승규;김성태;김영복
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.189-198
    • /
    • 1997
  • In order to find out the potential of LP gas as a substitute fuel for small fm engine, experiments were carried out with a four-stroke spark-ignition engine which was modified from a kerosene engine mounted on the power tiller. Performance characteristics of kerosene and LP gas engine such as torque, volumetric efficiency fuel consumption rate, brake thermal efficiency, exhaust temperature, and carbon monoxide and hydrocarbon emissions were measured and analyzed under various levels of engine speed and compression ratio. The results were summarized as follows. 1. It showed that forque of LPG engine was 41% lower than that of kerosene engine with the same compression ratio, but LPG engine with compression ratio of 8.5 it was showed similar torque level to kerosene engine with compression ratio of 4.5. 2. Fuel consumption of LPG engine was reduced by about 5.1% and thermal efficiency was improved by about 2% compared with kerosene engine with the same compression ratio. With the incrasing of compression ratio in LPG engine fuel consumption rate decreased and thermal efficiency increased. 3. Exhaust temperature of LPG engine was about 15% lower than that of kerosene engine. Concenrations of emissions from LPG engine was affected insignificantly by compression ratios, and carbon monoxide emissions from the LPG engine was not affected by engine speed so much. The carbon monoxide and hydrocarbon emissions from LPG engine were about 94% and 66% lower than those of kerosene engine, respectively.

  • PDF

급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구 (An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine)

  • 강필중;김형모;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

EFFECT OF ADDITIVE ON THE HEAT RELEASE RATE AND EMISSIONS OF HCCI COMBUSTION ENGINES FUELED WITH RON90 FUELS

  • Lu, X.C.;Ji, L.B.;Chen, W.;Huang, Z.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of the di-tertiary butyl peroxide (DTBP) additive on the heat release rate and emissions of a homogeneous charge compression ignition (HCCI) engine fueled with high Research Octane Number (RON) fuels were investigated. The experiments were performed using 0%, 1%, 2%, 3%, and 4% (by volume) DTBP-RON90 blends. The RON90 Fuel was obtained by blending 90% iso-octane with 10% n-heptane. The experimental results show that the operation range was remarkably expanded to lower temperature and lower engine load with the DTBP additive in RON90 fuel. The first ignition phase of HCCI combustion was observed at 850 K and ended at 950 K while the hot ignition occurred at 1125 K for all fuels at different engine working conditions. The chemical reaction scale time decreases with the DTBP addition. As a result, the ignition timing advances, the combustion duration shortens, and heat release rates were increased at overall engine loads. Meanwhile, the unburned hydrocarbon (UHC) and CO emissions decrease sharply with the DTBP addition while the NOx emissions maintain at a lower level.

가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성 (Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

A STUDY ON THE ENGINE PERFORMANCE OF A SPARK IGNITION ENGINE ACCORDING TO THE IGNITION ENERGY

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.1-6
    • /
    • 2014
  • The more or less homogeneous fuel-air mixture that exists at the end of the compression process is ignited by an electric ignition spark from a spark plug shortly before top dead center. The actual moment of ignition is an optimization parameter; it is adapted to the engine operation so that an optimum combustion process is obtained. Brake mean effective pressure (BMEP) of the spark ignition energy control device (IECD) than conventional spark system at the stoichiometric mixture is increased about 9%. For lean burn engine, the lean limit is extended about 25% by using the IECD. It was considered the stability of combustion by the increase of flame kernel according to the high ignition energy supplies in initial period and discharge energy period lengthen by using the IECD.

점화시스템의 종류와 가솔린 엔진 성능과의 상관관계에 대한 연구 (I) (A Study on Relationship between Ignition Systems and the Performances of Gasoline Engines (I))

  • 선우명호;송정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.966-969
    • /
    • 1998
  • Fast burning achieves higher efficiency, and reduces cycle variations which is able to improve vehicle driveability. Furthermore, the greater resistance to knock with fast burning can allow the fuel economy advantages associated with higher compression ratio to be realized. One way of increasing the combustion speed is to enhance the performance of ignition systems which were able to reduce the early period of combustion. It is well known that shortening the initial stage of combustion also reduces the cyclic variations. This literature survey deals with the papers which have studied the ignition process or various ignition systems. Those systems increasing the combustion speed, extending the lean misfire limit, reducing the exhaust gas and stabilizing the operating condition of the spark ignition engine by modifying the ignition process or increasing ignition energy.

  • PDF

부분 예혼합 압축착화 조건에서 디젤분무의 화염특성 (Flame Characteristics of Diesel Spray in the Condition of Partial Premixed Compression Ignition)

  • 방중철;박철환
    • 한국연소학회지
    • /
    • 제17권2호
    • /
    • pp.24-31
    • /
    • 2012
  • Diesel engines exhaust much more NOx(Nitrogen Oxides) and PM(Particulate Matter) than gasoline engines, and it is not easy to reduce both NOx and PM simultaneously because of the trade-off relation between two components. This study investigated flame characteristics of the partial premixed compression ignition known as new combustion method which can reduce NOx and PM simultaneously. The investigation was performed through the analysis of the flame images taken by a high speed camera from the visible engine which is the modified single cylinder diesel engine. The results obtained through this investigation are summarized as follows; (1) The area of the luminous yellow flame was reduced due to the decrease of flame temperature and even distribution of temperature. (2) The darkish yellow flame zone caused by the shortage of the remaining oxygen after the middle stage of combustion was considerably reduced. (3) Since the ignition delay was shortened, the violent combustion did not occur and the combustion duration became shortened.

A Study on the Performance of an LPG (Liquefied Petroleum Gas) Engine Converted from a Compression Ignition Engine

  • Choi, Gyeung-Ho;Kim, Tae-Kwon;Cho, Ung-Lae;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • 에너지공학
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The purpose of this study was to investigate the reduction of exhaust gas temperature in a LPG engine that had been converted from a diesel engine. A conventional diesel engine was modified to a LPG (Liquefied Petroleum Gas) engine by replacing the diesel fuel injection pump with a LPG fuel system. The research was performed by measuring the exhaust gas temperature upon varying spark ignition timing, airfuel ratio, compression ratio, and different compositions of butane and propane. Engine power and exhaust temperature were not influenced by various butane/propane fuel compositions. Finally, among the parameters studied in this investigation, spark ignition timing is one of the most important in reducing exhaust gas temperature.

분사시기 및 분사각 변화에 따른 HCCI 엔진의 혼합기 분포 및 연소특성에 관한 연구 (A Study on the Characteristics of Mixture Formation and Combustion in HCCI Engine according to the Various Injection Angles and Timings)

  • 김형민;류재덕;이기형
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.20-25
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and injection angle affects the mixture formations. Thus the purpose of this study was to investigate relationship of combustion and mixture formations according to injection timing and injection angle in a common rail direct injection type HCCI engine using a early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel. injection timing and injection angle affect the mixture formations and in turn affects combustion in the PCCI engine.