• 제목/요약/키워드: Compression ignition

검색결과 324건 처리시간 0.023초

천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가 (Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition)

  • 오세철;오준호;장형준;이정우;이석환;이선엽;김창기
    • 한국가스학회지
    • /
    • 제26권3호
    • /
    • pp.45-53
    • /
    • 2022
  • 디젤엔진의 배출물 개선을 위해 탄소수가 낮은 천연가스를 혼합하여 사용하는 천연가스-디젤 혼소 연소가 각광받고 있다. 특히 자발화 특성에 차이가 있는 디젤과 천연가스의 특성을 이용한 반응성 제어 압축착화(reactivity controlled compression ignition, RCCI) 연소 전략을 통해 기존 디젤엔진의 효율과 배출가스를 동시에 개선시키는 연구가 활발하게 진행되어 왔다. 상사점보다 앞당겨진 디젤 직접 분사시기 적용을 통해 실린더 전체 영역의 균일 혼합기를 형성하여 전체적으로 희박한 자발화 기반 연소를 달성함으로써 질소산화물 (NOx) 및 입자상물질 (PM) 저감과 제동열효율 개선을 동시에 달성할 수 있다. 하지만 매우 희박한 저부하 영역에서 불완전 연소량이 증가하는 단점이 존재하며, 안정적인 연소 구현을 위해 디젤 분사시기가 민감하게 제어되어야 하는 어려움도 존재한다. 본 연구에서는 앞서 언급된 저부하 영역에서의 천연가스-디젤 혼소 엔진의 효율 및 배기 개선을 확인하고, 동시에 발전용 엔진 구동 영역에서 디젤 분사시기에 따른 연소안정성을 평가하였다. 실험에는 6 L급 상용디젤 엔진이 사용되었으며, 1,800 rpm, 50% 부하 영역 (~50 kW)에서 실험이 진행되었다. 제동효율 및 연소안정성을 개선하기 위한 전략으로 분무 패턴이 다른 2개의 인젝터를 적용하였으며, 천연가스/디젤 비율과 디젤 분사시기를 바꿔가면서 실험이 진행되었다. 실험 결과, 협각 분사가 추가된 수정 인젝터에서 제동 열효율이 증가하는 것을 확인하였다. 또한 연소안정성 및 출력, 그리고 강화된 배기 규제를 고려하였을 때 수정 인젝터의 분무 패턴이 예혼합연소 형성에 적합하였고 이를 통해 질소산화물 배출량을 Tier-V 기준치인 0.4 g/kWh 이하로 저감함으로써 RCCI 연소 가능 영역을 확장할 수 있음을 실험적으로 확인하였다.

HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구 (Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine)

  • 임기훈;이성원;박철웅;최영;김창기
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.387-394
    • /
    • 2013
  • 온실가스인 $CO_2$ 배출을 줄이기 위한 연료로서 고효율 연소의 특성을 갖는 수소-천연가스 혼합연료(HCNG)가 유력한 미래 대체연료로서 주목받고 있다. 일반적으로 엔진에서의 압축비 상승은 효율 향상 및 이산화탄소 배출 저감을 위한 방법 중의 하나로서 HCNG 엔진에서도 고압축비의 적용이 효과적일 수 있으나, 수소의 높은 연소 속도 및 화염 온도로 인한 조기착화, 노킹 등의 이상연소는 엔진 부품의 파손 및 출력 저하를 초래할 수 있다. 본 연구는 HCNG 엔진에서 압축비를 변경하여 엔진 성능 및 노킹 특성을 분석하는데 목적이 있다. 기존의 CNG 엔진에 CNG 및 HCNG 연료를 적용하여 공기과잉률의 변화에 따른 연소 특성을 분석하고, 압축비 변경 후 엔진의 성능에 미치는 영향을 파악하였다.

디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향 (The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine)

  • 박철웅;조준호;오승묵
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.

압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성 (Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel)

  • 차준표;윤승현;전문수;이창식
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

파일럿 분사시기에 따른 DME 부분 예혼합 압축착화 엔진의 연소 및 배기특성에 관한 연구 (An Investigation about Combustion and Emission Characteristics for Pilot Injection Timing on Partially Premixed Charge Combustion Ignition Engine Fueled with DME)

  • 정재훈;임옥택;표영덕;이영재
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.43-49
    • /
    • 2013
  • This work investigated the effects of engine speed and injection timing on combustion and emissions characteristics in a partially premixed charge compression ignition (pPCCI) engine fueled with DME. pPCCI engine especially has potential to achieve more homogeneous mixture in the cylinder, which results in lower NOx and smoke emission. In this study single cylinder engine was equipped with common rail and injection pressure is 700 bar. Total injected fuel mass is 64.5 $mm^3$ per cycle. The amount of pilot injection of the entire injection 12.5% is tested. Results show that NOx emission is decreased while IMEP is increased as the retard of injection timing. Besides, NOx emissions are slightly rised as well as IMEP is increased with the increase of engine speed.

바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성 (Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio)

  • 차준표;윤승현;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구 (An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure)

  • 정연호;양지웅;오충환;임옥택
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

바이오디젤 연료 분무의 거동특성 연구 (A Study of Behavior Characteristics of Biodiesel Fuel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.156-163
    • /
    • 2014
  • Diesel engine is most suitable one for biodiesel fuel because the compression-ignition diesel engine has desirable fuel consumption due to higher thermal efficiency and in addition, the improvement of the fuel consumption also leads to a reduction of $CO_2$ emission and then it does not need to have spark-ignition system, which means that there is less charge on the technic and complexity. In this study, the spray behavior characteristics of the vegetable palm oil were analyzed by using a common-rail injection system of commercial diesel engine and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel(BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures: 500bar, 1000bar, 1500bar, and 1600bar by setting injection duration to $500{\mu}s$. Consequently, it was found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of palm oil and diesel at a fixed injection pressure. In particular, all experiments showed the spray angle about $12^{\circ}{\sim}13^{\circ}$.

4 기통 스파크 점화 기관의 노킹 신호 해석 방법 (Methods of Knock Signal Analysis in a S.I. Engine)

  • 김경운;전광민
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.12-21
    • /
    • 1993
  • In recent years, high efficiency, high performance, and low pollutant emmision engines have been developed. Knock phenomenon has drawn interests because it became an hinderance to engine power and efficiency increase through higher compression ratio. Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and accompanied a high pitched metallic noise. And this phenomenon is characterized by knock occurrence percentage, knock occurrence angle and knock intensity. A four cylinder spark ignition engine is used in our experiment, and its combustion chamber pressure is measured at various engine speeds, ignition timing. The data are analyzed by numerous methods in order to select the optimum methods and to achieve better understanding of knock characteristics. Methods using band-pass filter, third derivative and step method are shown to be the most suitable, while methods using frequency analysis are shown to be unsuitable. Because step method only uses signals above threshold value during knocking condition, pressure signal analyses with this method show good signal-to-noise ratio.

  • PDF

균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과 (Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine)

  • 이창식;윤영훈;김명윤
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.