• Title/Summary/Keyword: Compression Index

Search Result 423, Processing Time 0.024 seconds

The Study on Rigidity Index of the Soft Clay in Korea (국내 연약지반의 강성지수(Ir)에 관한 연구)

  • 서수봉;윤일형;이재식;구남실
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.49-54
    • /
    • 2000
  • Several soil parameters can be calculated for results of Piezocone test; sensitivity, soil classification, OCR, undrained shear strength, coefficient of consolidation etc., and used to analysis geotechnical problems. Particularly, the coefficient of consolidation which is related to degree of consolidation varies according to rigidity index(I/sub r/). In this study, rigidity index(I/sub r/) was analyzed by Roy's formula. Trixial tests and unconfined compression tests data in the ten sites was analyzed. In conclusion, rigidity index(I/sub r/) was suggested such as rigidity index(I/sub r/) = 15∼60, average rigidity index value(I/sub r/) of approximately 33 within a country.

  • PDF

A Study on Calculation of Urban Compactness Index Considering Space Syntax: Focusing on the Declining Local Cities (공간구문론을 활용한 도시 압축지수 산정에 관한 연구: 소멸위험도시를 중심으로)

  • HA, Ji-Hye;KANG, Jung-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.29-58
    • /
    • 2022
  • Recently, Korea has been experiencing a problem of population decline, therefore the transition to a compact spatial structure is being urged. However, what is required is not just physical compression, but a compact city that also considers connectivity, in view of the changes in today's demographic and industrial structure. From this point of view, this study measures the compressibility of domestic cities suffering from extinction risk due to low birth rates, aging population, and population decline, and examined the spatial structure characteristics. In addition to the compressibility evaluation index used in previous studies, the compressibility of six indicators (population, land use, service accessibility, transport accessibility, connectivity, and concentration) was compared and analyzed, and a comprehensive compression index was calculated. The analysis results, based on the comprehensive compression index, classified 2.3% cities in the first grade, 4.6% in the second grade, 16.09% in the third grade, 43.68% in the fourth grade, and 33.33% in the fifth grade areas. Currently, the urban characteristics affecting the compactness index differ from region to region. Therefore, it is necessary to establish measures and policies for extinction risk considering the influence of each region's compactness index. This study is meaningful in that connectivity was considered using spatial syntax, and the compactness of cities at risk of extinction was compared and analyzed quantitatively. It is expected that this study will be used as basic data to establish the direction and action strategy for extinction risk cities.

Correlations Between the Physical Properties and Consolidation Parameter of West Shore Clay (서해안 점토의 물리적 특성과 압밀정수의 상관성)

  • Heo, Yeol;Hwang, Insang;Kang, Changwoo;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • In the correlation formulas related to consolidation proposed at present, the analyzed areas are limited to certain overseas or domestic areas and in order to increase the number of data, experimental data of different areas are integrated and therefore in many cases application is difficult. In addition, models have been developed without clear statistic evaluation of the obtained data. Accordingly, this study divided the soft areas of the west coast into Hangang, Kumgang and Yeongsangang in order to maximally reduce uncertainty of the experimental data and performed normality test and regression analysis on the physical and dynamic characteristics. According to the analysis result, the compression index and the modified compression index had strong linearity and in all areas modified compression index and initial void ratio had closest correlation, followed by total unit weight, water contents and liquid limits. As for overconsolidation ratio with depth, the width of overconsolidation ratio was large when the depth was less than 5 to 6 m in all areas and when the depth was over 5 to 6 m, the ratio was constant.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

Image compression using K-mean clustering algorithm

  • Munshi, Amani;Alshehri, Asma;Alharbi, Bayan;AlGhamdi, Eman;Banajjar, Esraa;Albogami, Meznah;Alshanbari, Hanan S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.275-280
    • /
    • 2021
  • With the development of communication networks, the processes of exchanging and transmitting information rapidly developed. As millions of images are sent via social media every day, also wireless sensor networks are now used in all applications to capture images such as those used in traffic lights, roads and malls. Therefore, there is a need to reduce the size of these images while maintaining an acceptable degree of quality. In this paper, we use Python software to apply K-mean Clustering algorithm to compress RGB images. The PSNR, MSE, and SSIM are utilized to measure the image quality after image compression. The results of compression reduced the image size to nearly half the size of the original images using k = 64. In the SSIM measure, the higher the K, the greater the similarity between the two images which is a good indicator to a significant reduction in image size. Our proposed compression technique powered by the K-Mean clustering algorithm is useful for compressing images and reducing the size of images.

Short-segment Pedicle Instrumentation of Thoracolumbar Burst-compression Fractures; Short Term Follow-up Results

  • Shin, Tae-Sob;Kim, Hyun-Woo;Park, Keung-Suk;Kim, Jae-Myung;Jung, Chul-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.265-270
    • /
    • 2007
  • Objective : The current literature implies that the use of short-segment pedicle screw fixation for spinal fractures is dangerous and inappropriate because of its high failure rate, but favorable results have been reported. The purpose of this study is to report the short term results of thoracolumbar burst and compression fractures treated with short-segment pedicle instrumentation. Methods : A retrospective review of all surgically managed thoracolumbar fractures during six years were performed. The 19 surgically managed patients were instrumented by the short-segment technique. Patients' charts, operation notes, preoperative and postoperative radiographs (sagittal index, sagittal plane kyphosis, anterior body compression, vertebral kyphosis, regional kyphosis), computed tomography scans, neurological findings (Frankel functional classification), and follow-up records up to 12-month follow-up were reviewed. Results : No patients showed an increase in neurological deficit. A statistically significant difference existed between the patients preoperative, postoperative and follow-up sagittal index, sagittal plane kyphosis, anterior body compression, vertebral kyphosis and regional kyphosis. One screw pullout resulted in kyphotic angulation, one screw was misplaced and one patient suffered angulation of the proximal segment on follow-up, but these findings were not related to the radiographic findings. Significant bending of screws or hardware breakage were not encountered. Conclusion : Although long term follow-up evaluation needs to verified, the short term follow-up results suggest a favorable outcome for short-segment instrumentation. When applied to patients with isolated spinal fractures who were cooperative with 3-4 months of spinal bracing, short-segment pedicle screw fixation using the posterior approach seems to provide satisfactory result.

Consideration of Physical and Compression Characteristics among Western and Southern Coastal Marine Clays - Incheon·Mokpo·Gwangyang·Busan - (서·남해안 해성점토의 물리·압축특성 고찰 - 인천·목포·광양·부산 -)

  • Kim, Sangkwi;Yea, Geuguwen;Kim, Kilsu;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.43-51
    • /
    • 2011
  • Marine clays are widely distributed in Korean eastern, western and southern coastal areas. Understanding engineering characteristics of the soft ground is very important, whenever civil structures are constructed in those coastal areas. It is because the ground is composed of highly compressible marine clay. In this paper, the physical and compression characteristics of Incheon, Mokpo, Gwangyang and Busan marine clay were analyzed and the characteristics between western and southern coastal marine clays were compared. For this, test results of 1,471 samples from 114 sites were used. As a result, Incheon clay showed the lowest plasticity and the highest unit weight due to influx of silt from the Yellow River and the turn of the tide of Incheon area. However, Gwangyang clay showed highly compressible characteristic due to extensive reclamation. On the other hand, Mokpo and Busan clay showed partially similar levels of characteristics. The compression index of Mokpo and Busan clay was high more than twice in comparison with Incheon clay and that of Gwangyang clay was higher than seventy percents in comparison with Mokpo and Busan clay.

Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index (Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석)

  • Sungwook Cho;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2023
  • Although the development of transportation means has realized the right to mobility for the disabled who have difficulty in moving, it can be said that the improvement of the safety of passengers with disabilities that can occur in a car accident is lower than that of ordinary passenger seats. In particular, in the case of a rear-end collision that can occur suddenly, it is a reality that disabled passengers are vulnerable to head and neck injuries. Therefore, in this study, a multi-layer headrest foam that divides the headrest into three parts in the coronal plane was proposed to improve the head and neck injury index of disabled passengers in the vehicle in the event of a rear-end collision of a wheelchair transport vehicle. A range of stress scale factors was selected to give various compressive characteristics of the foam through low-speed rear-end collision analysis through a simple model, and GA optimization was performed by specifying the range as a parameter. Through the optimization result, the phase relationship between HIC and NIC was analyzed according to the compression characteristics of the layers. HIC responded most sensitively to the compression characteristics of the front layer and NIC responded to the compression characteristics of the mid layer, and the compression characteristics of the rear layer showed the lowest. A normal headrest and an optimized multi-layer headrest were placed in the validation model to analyze the low-speed rear-end collision sled test, and HIC and NIC were derived lower in the multi-layer headrest than in the general headrest. The compression behavior of the multi-layer headrest was also clearly shown, and it was verified that the multi-layer headrest was effective in improving the injury index of the head and neck compared to the general headrest.

A numerical study on anisotropic strength of a rock containing fractures under uniaxial compression condition

  • Ohk Jin-Wook;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.150-155
    • /
    • 2003
  • Fractures in the form of micro cracks are commonly found in natural rocks. A rock behaves in a complex way due to fracture; in particular, the anisotropic strength of a rock material is significantly influenced by the presence of these fractures. Therefore, it is essential to understand the failure mechanism of a fractured rock. In this study, a fractured rock is formulated in terms of fabric tensor based on geometric and mechanical simplifications. In this way, position, density and shape of fractures can be determined by the fabric tensor so that rocks containing multi-fractures can successfully be modeled. Also an index to evaluate the degree of anisotropy of a fractured rock is proposed. Hence, anisotropic strength of a rock containing fractures under uniaxial compression condition is estimated through a series of numerical analyses for the multi-fractured model. Numerical investigations are carried out by varying the fracture angle from $0^{\circ}\;to\;90^{\circ}$ and relationship between uniaxial compression strength and the degree of anisotropy is investigated. By comparing anisotropic strength of numerical analysis with analytic solution, this study attempts to understand the failure mechanism of rock containing fractures.

  • PDF

Structural Performance of Shearwall with Sectional Shape in Wall-type Apartment Buildings (단면현상에 따른 벽식구조 전단벽의 구조성능 평가)

  • 한상환;오영훈;오창학;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.3-14
    • /
    • 2000
  • Structural performance of the walls subjected to lateral load reversals depends on various parameters such as loading history, sectional shape, reinforcement, lateral confinement, aspect ratio, axial compression, etc. Thus, the performance of the shearwall for wall-type apartment should be evaluated properly considering above parameters. This study investigates the effect of sectional shape on the structural performance of the wall. Sectional shape of the specimen is rectangular, barbell and T. Based on this experimental results, all specimens behaved as ductile fashion and failed by concrete crushing of the compression zone. Deformation index of those specimens evaluated better than 3 of ductility ratio, and 1.5% of deformability specified by seismic provision. Moreover, the performance of the rectangular shaped specimen, whose compression zone was confined with U-bar and cross tie, was as good as the barbell shaped specimen. Therefore, if we considered construction practice such as workmanship and detailing, shearwall with rectangular section may be more economical lateral load resisting system.