• 제목/요약/키워드: Compression Buckling Strength

검색결과 205건 처리시간 0.019초

Analysis and design of metal-plate-connected joints subjected to buckling loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.417-432
    • /
    • 2000
  • A comprehensive analytic study has been conducted to investigate the instability problems of metal-plate-connected (MPC) joints in light frame trusses. The primary objective in this study is to determine the governing factors that constitute the buckling of the metal connectors and their effects on the structural response of joints. Another objective is to recommend design curves for the daily structural design of these joints. The numeric data presented in this paper has emerged from a broad base that was founded on over 350 advanced computer simulations, and was supported by available experimental results obtained by others. This basic-to-applied research includes practical engineering parameters such as size of gaps, shear lengths, gauge (plate thickness) of connectors, size of un-braced areas, failure modes, and progressive disintegration of joints. Square-end members have been emphasized though the results cover the custom-made fitted joints. The results indicate that chord shears cause and dominate the buckling of MPC joints, and the shear length has a more pronounced effect than the size of gaps. Further, large gauges and small un-braced areas improve the buckling response. Several practical recommendations have been suggested throughout the paper such as keeping the ratio of gap/shear length below 3/4 for improving the buckling strength. The study reveals that multi-area joints should not be simplified as single web-to-chord MPC joints such as keeping the ratio of gap/shear length below 3/4 for improving the buckling strength, even where one web is in tension and the other in compression. Finally, the results obtained from this study favorably agree with experimental data by others, and the classic buckling theories for other structural components.

단부구속효과를 고려한 관통 가셋트 부착 강관부재의 좌굴내력 및 유효세장비 산정에 관한 연구 (A Study on the Buckling Strength and Effective Length of Tubular Member with Gusset Plate Considering End Restraints)

  • 김우범
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.159-165
    • /
    • 2003
  • 단부에 관통 가셋트판이 부착된 강관부재의 좌굴거동은 단부의 형상 및 상태에 따라 구속정도가 상이하게되며 단부요소는 세 장비에 따라 탄성 및 비탄성 거동 특성을 보임에 따라 이론적 좌굴내력을 도출하는 것은 사실상 불가능하다. 본 연구에서는 탄성좌굴의 이론적 접근을 바탕으로 세장비($\lambda$), 강성비($\beta$), 지지길이비(G), 강관크기, 부재의 초기변형 등을 고려하여 비탄성 유한요소 해석을 수행하여 각각의 영향요소가 좌굴하중에 미치는 영향을 살펴보았다. 또한 유한요소 모델링시 세장비($\lambda$), 강성비($\beta$), 지지길이비(G), 강관크기 등의 매개변수 분석을 통하여 강도식을 도출하였다.

보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈) (The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling-)

  • 장창두;나승수
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

박스단면 고강도 트러스 기둥재의 좌굴거동 (The Buckling Behavior of High-strength Steel Truss Columns with Box Section)

  • 장갑철;장경호
    • 한국공간구조학회논문집
    • /
    • 제7권3호
    • /
    • pp.79-86
    • /
    • 2007
  • 최근, 건설되어지는 강구조물들의 장경간화 및 고층화로 인하여 고강도강재의 적용이 점차 요구되고 있다. 고강도강재는 적용구조물들을 공간 및 두께들 감소시킴으로써 외관성 및 경제성을 증가시킬 수 있는 장점이 있다. 이러한 고강도 강재의 적용을 위해서는 좌굴에 대한 기준이 필요하나 현재 국내의 경우 이러한 좌굴에 관한 연구가 미흡하다. 이에 본 연구에서는 3차원 탄소성 유한변위 프로그램을 이용하여 고강도 박스단면 트러스 부재의 좌굴거동에 대한 해석적 연구를 수행하였다. 고강도강재를 적용한 박스단면 트러스부재의 허용 압축응력에 대한 기준을 제안하였으며 그 적용성을 확인하였다. 그리고 고강도 트러스 부재의 설계에도 적용할 수 있음을 명확히 하였다.

  • PDF

Experimental testing of cold-formed built-up members in pure compression

  • Biggs, Kenneth A.;Ramseyer, Chris;Ree, Suhyun;Kang, Thomas H.-K.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1331-1351
    • /
    • 2015
  • Cold-formed built-up members are compression members that are common in multiple areas of steel construction, which include cold-formed steel joints and stud walls. These members are vulnerable to unique buckling behaviors; however, limited experimental research has been done in this area. Give this gap, experimental testing of 71 built-up members was conducted in this study. The variations of the test specimens include multiple lengths, intermediate welds, orientations, and thicknesses. The experimental testing was devised to observe the different buckling modes of the built-up C-channels and the effects of the geometrical properties; to check for applicability of multiple intermediate welding patterns; and to evaluate both the 2001 and 2007 editions of the American Iron and Steel Institute (AISI) Specification for built-up members in pure compression. The AISI-2001 and AISI-2007 were found to give inconsistent results that at times were un-conservative or overly conservative in terms of axial strength. It was also found that orientation of the member has an important impact on the maximum failure load on the member.

콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구 (An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF