• Title/Summary/Keyword: Compression Buckling Strength

Search Result 205, Processing Time 0.022 seconds

An Experimental Study on the Behavior of Aluminum-Honeycomb Sandwich Panels (알루미늄하니콤 샌드위치판의 거동에 관한 실험적 연구)

  • Lee, Yong W.;Chun, Min S.;Paik, Jeom K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.106-123
    • /
    • 1996
  • This paper experimentally investigates the characteristics of Al-honeycomb sandwich panels which are considered as a promising primary strength member of weight critical large structures. Some tests on the aluminum honeycomb panels subject to 3-point bending or uniaxial compression or crushing load are carried out. Based on the test results, linear elastic response, buckling/ultimate strength and crushing/energy absorption capacity are discussed. Some guidelines for design of aluminum honeycomb panels are given.

  • PDF

Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle columns

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.601-615
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, wall frames and columns, the use of back-to-back built-up CFS angle sections are becoming increasingly popular. In such an arrangement, intermediate fasteners are required at discrete points along the length, preventing the angle-sections from buckling independently. Limited research is available in the literature on the axial strength of back-to-back built-up CFS angle sections. The issue is addressed herein. This paper presents the results of 16 experimental tests, conducted on back-to-back built-up CFS screw fastened angle sections under axial compression. A nonlinear finite element model is then described, which includes material non-linearity, geometric imperfections and explicit modelling of the intermediate fasteners. The finite element model was validated against the experimental test results. The validated finite element model was then used for the purpose of a parametric study comprising 66 models. The effect of fastener spacing on axial strength was investigated. Four different cross-sections and two different thicknesses were analyzed in the parametric study, varying the slenderness ratio of the built-up columns from 20 to 120. Axial strengths obtained from the experimental tests and finite element analysis were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparison showed that the DSM is over-conservative by 13% on average. This paper has therefore proposed improved design rules for the DSM and verified their accuracy against the finite element and test results of back-to-back built-up CFS angle sections under axial compression.

Local Buckling in Steel Box Girder Bridge with Lifting and Lowering Support Method (지점 상승 하강 공법에 의한 강상자형교의 국부좌굴)

  • Koo, Min Se;Jeong, Jae Woon;Na, Gwi Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • The lifting and lowering supports method makes up for the weak points in the classical method and provides makes construction economical effect to construction. The application of pre-compression to continuous steel box girder bridges makes it possible to reduce the amount of steel, the height of girders and consequently, the cost consequentlyof the bridges' construction by through the process of concrete filling- up and the lifting-lowering of the inner supports. The lifting and lowering supports method is apt to cause local buckling in the lower flange and web plates by due to the process of the lifting of the inner supports. Therefore iln this study, therefore, the possibility of local buckling could be decreased, in consideration of the lifting force and the buckling strength of stiffened plates, by increasing the number of longitudinal stiffeners and the installation of extended longitudinal stiffeners on the lower flange and the web plates in the range of positive moment.

Local Buckling of Built-up Square Tubular Compression Members Fabricated with HSA800 High Performance Steels under Concentric Axial Loading (중심압축력을 받는 건축구조용 고성능강(HSA800) 용접 각형강관 압축재의 국부좌굴)

  • Yoo, Jung-Han;Kim, Joo-Woo;Yang, Jae-Keun;Kang, Joo-Won;Lee, Dong-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.435-442
    • /
    • 2012
  • Recently, high performance(strength) steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper is a series of basic study for the design specification of structural members using high performance steel, material properties of high performance rolled steel building structures. HSA800 was compared with the requirements of Korean Standards(KS) for HSA800. Welded square tube stub columns with variables of width-to-thickness ratios are planned in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio and uniaxial compressive tests are carried out. In addition, the local buckling behaviors of stub columns obtained finite element analysis were compared with those of test results.

Evaluation on Applicability of Built-up Square Tubular Compression Members Fabricated with HSA800 High Performance Steel Considering Local Buckling (국부좌굴을 고려한 건축구조용 고성능강(HSA800) 조립각형강관 압축재의 적용성 평가)

  • Yoo, Jung Han;Kim, Joo Woo;Yang, Jae Guen;Kang, Joo Won;Lee, Dong Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.223-231
    • /
    • 2013
  • Recently, high-performance steels have been increasingly used for structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper offers a series of basic study for the design specification of structural members using high performance steel, that is material properties of HSA800 (High-performance rolled steel for building structures). Built-up square tube stub columns with variables of width-to-thickness ratios are planned as a parametric study in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio. In addition, the buckling behaviors of stub columns obtained finite element (FE) analysis were compared with those from experimental tests. The verified FE model was used for parametric study and checked applicability of high-strength steel on current design specification.

Development of a novel self-centering buckling-restrained brace with BFRP composite tendons

  • Zhou, Z.;He, X.T.;Wu, J.;Wang, C.L.;Meng, S.P.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.491-506
    • /
    • 2014
  • Buckling-restrained braces (BRBs) have excellent hysteretic behavior while buckling-restrained braced frames (BRBFs) are susceptible to residual lateral deformations. To address this drawback, a novel self-centering (SC) BRB with Basalt fiber reinforced polymer (BFRP) composite tendons is presented in this work. The configuration and mechanics of proposed BFRP-SC-BRBs are first discussed. Then an 1840-mm-long BFRP-SC-BRB specimen is fabricated and tested to verify its hysteric and self-centering performance. The tested specimen has an expected flag-shaped hysteresis character, showing a distinct self-centering tendency. During the test, the residual deformation of the specimen is only about 0.6 mm. The gap between anchorage plates and welding ends of bracing tubes performs as expected with the maximum opening value 6 mm when brace is in compression. The OpenSEES software is employed to conduct numerical analysis. Experiment results are used to validate the modeling methodology. Then the proposed numerical model is used to evaluate the influence of initial prestress, tendon diameter and core plate thickness on the performance of BFRP-SC-BRBs. Results show that both the increase of initial prestress and tendon diameters can obviously improve the self-centering effect of BFRP-SC-BRBs. With the increase of core plate thickness, the energy dissipation is improved while the residual deformation is generated when the core plate strength exceeds initial prestress force.

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

A Study on the Compression Strength of Structural Steel Tube Applied in Spatial Structure (공간구조에 적용되는 일반구조용 강관의 압축내력에 관한 연구)

  • Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.83-93
    • /
    • 2008
  • Space truss is a rational system which forming large span in spatial structure and the steel tube is used well as a structure member in truss system. This study includes coupon test and Stub-column compression test on the structural steel tube. The compression test of Stub-column was performed to characterize and quantify the material characteristic and strength of column. In this study, we also researched the matter of compatibility, in which we compared the experiment formula and the abstract formula by the application of the LSD standard formula, SSRC and ECCS multiple column curve.

  • PDF