• 제목/요약/키워드: Compressed hydrogen

검색결과 80건 처리시간 0.027초

수소-압축천연가스(HCNG) 자동차 국내외 개발동향 및 향후과제 (The Trend of Domestic and Foreign Development and Hereafter Subjects of Hydrogen-Compressed Natural Gas (HCNG) Vehicles)

  • 이영철;한정옥;이중성;채정민;홍성호
    • 신재생에너지
    • /
    • 제6권3호
    • /
    • pp.30-38
    • /
    • 2010
  • 수소경제로 가는 길목에서의 압축천연가스에 수소를 첨가한 수소-압축천연가스(HCNG)는 자동차 연료로서의 뛰어난 효과로 인해 미국, 캐나다, 유럽 등에서는 강화되고 있는 자동차의 배출가스 규제에 대해 만족할 수 있는 차세대 천연가스 자동차의 대안으로서 관련 기술개발과 실증사업에 주력하고 있다. 향후 수소시대의 도래에 즈음하여 HCNG의 사용은 수소사용에 대한 인식 향상과 아울러 수소사용을 안정적으로 공급할 수 있는 토대를 마련하고 수소제조 등 여러 분야에서 기술개발을 할 수 있는 부가적인 효과가 있다고 하겠다. 따라서 최근 국내에서 시내버스와 청소차등에서 천연가스 차량의 보급이 확대되고, 충전소도 점차 확대되고 있는 상황에서 HCNG 연료의 적용가능성을 확인하기 위한 연구가 진행되고 있다. 본 논문에서는 인프라 관점에서의 선진국과 국내의 기술개발 현황을 소개하고 향후 우리에게 필요한 과제가 무엇인지를 생각해보는 기회를 갖고자 하였다.

전기화학적 수소 압축기 기술 (A Review of Electrochemical Hydrogen Compressor Technology)

  • 김상경
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

동적 모델링에 의한 수소 충전 시에 걸리는 시간의 산출 (Estimation of Hydrogen Filling Time Using a Dynamic Modeling)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.189-195
    • /
    • 2021
  • A compressed hydrogen tank is to be repressurized to 40 bar by being connected to a high-pressure line containing hydrogen at 50 bar and 25℃. Hydrogen filling time and the corresponding hydrogen temperature has been estimated when the filling process stopped according to several thermodynamic models. During the process of cooling the hydrogen tank, hydrogen temperature and pressure vs. time estimation was performed using Aspen Dynamics. Filling time, hydrogen temperature after filling hydrogen gas, cooling time and the final tank pressure after tank filling process have been completed according to the thermodynamic models are almost same.

고압 수소 충전 시스템에 대한 실험 및 수치해석 (Experimental and Numerical Study on the Hydrogen Refueling Process)

  • 이택홍;김명진;박종기
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.342-347
    • /
    • 2007
  • The research on production and application of hydrogen as an alternative energy in the future is being carried out actively. It hydrogen storage is necessary in order that user use hydrogen economically without much difficulty. Among the ways of hydrogen storage the method which is compressed hydrogen gas by high pressure is easier for application than other methods. In this study, we have been calculated gas with changing pressure and temperature variation of container wall through applied to mass and energy balance equation when compressing hydrogen by high pressure, and also to Beattie-Bridgeman equation of state for the kinetic of hydrogen. We will apply above date as a preliminary for design of hydrogen storage tank.

Tavan Tolgoi Coal Bed Methane에 대한 몽골에서의 타당성 조사 (Pre-feasibility Study in Mongolia Tavan Tolgoi Coal Bed Methane)

  • 조원준;유혜진;이제설;이현찬;주우성;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.124-129
    • /
    • 2018
  • Methane is the cleanest fuel and supplies by many distributed type: liquefaction natural gas (LNG), compressed natural gas (CNG), and pipeline natural gas (PNG). Natural gas is mainly composed by methane and has been discovered in the oil and gas fields. Coal bed methane (CBM) is also one of them which reserved in coalbed. This significant new energy sources has emerge to convert an energy source, hydrogen and hydrogen-driven chemicals. For this CBM, this paper was written to analyze the geological analysis and reserves in Mongolian Tavan Tolgoi CBM coal mine and to examine the application field. This paper is mainly a preliminary feasibility report analyzing the business of Tavan Tolgoi CBM and its exploitable gas.

3차 상태방정식을 이용한 수소 충전 온도 거동 모사 (Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State)

  • 박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

Numerical Simulation of Fast Filling of a Hydrogen Tank

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.353-358
    • /
    • 2010
  • High pressure gas is a widely used storage mode for hydrogen fuel. A typical hydrogen tank that is charged with hydrogen gas can function as a hydrogen supply source in a large number of applications. The filling process of a high-pressure hydrogen tank should be reasonably short. However, when the fill time is short, the maximum temperature in the tank increases. Therefore the process should be designed in such a way to avoid high temperatures in the tank because of safety reasons. The paper simulates the fast filling process of hydrogen tanks using Computational Fluid Dynamics method. The local temperature distribution in the tank is obtained. Results obtained are compared with available experimental data. Further work is going on to improve the accuracy of the calculations.

  • PDF

수소기관의 수소연료의 희석에 의한 역화억제효과에 관한 연구 (A Study on Enhancement of Combustion Performance by Dilution of Hydrogen in Heavy-Duty Hydrogen Engine)

  • 김서영;김윤영;김용태;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.348-354
    • /
    • 2004
  • Hydrogen gas has several merits such as lower ignition energy, wide flammability and shorter quenching distance. It leads to high thermal efficiency but backfire occurrence. In this study, feasibility of expansion of BFL(Back-Fire Limit) equivalence ratio and combustion characteristics by a dilution of hydrogen fuel are experimently examined by using experimental heavy duty single cylinder hydrogen fueled engine. As results, it is found that BFL equivalence ratio is expanded to rich range and torque is increased.

차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험 (Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle)

  • 정상수;박지상;김태욱;정재한
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

대형 직접분사식 CNG기관의 희박한계 확장에 관한 연구 (A Study on Expansion of Lean Limit for Heavy-Duty DI Engine with Compressed Natural Gas)

  • ;이광주;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.735-740
    • /
    • 2011
  • 본 연구에서는 직접분사식 CNG기관의 희박한계를 보다 확장하여 고효율 및 저배기 공해를 실현시키고자 실린더 내에 고압의 천연가스를 직접분사함과 동시에 흡입과정 중 흡기관 내에 소량의 저압천연가스를 보조분사하는 경우의 희박한계 확장 및 제반특성에 대해 검토하였다. 그 결과, 흡기보조분사가 없을 경우 희박한계가 ${\lambda}$ = 1.4 까지였으나, 흡기보조분사율이 5~15% 정도에서는 희박한계가 ${\lambda}$ = 1.5 까지 확장되었다. 이는 흡기보조분사에 따른 혼합기의 혼합율 향상에 기인한 것으로 해석하였다. 연소기간은 줄어들었지만, 흡기보조분사의 효과는 주연소기간에서 조기연소기간보다 강하게 나타났다.