Purpose : To find out the proper compression ratios without degrading image quality and affecting lesion detectability on diagnostic images used in dentistry compressed with JPEG 2000 algorithm. Materials and Methods : Sixty Digora periapical images, sixty panoramic computed radiographic (CR) images, sixty computed tomographic (CT) images, and sixty magnetic resonance (MR) images were compressed into JPEG 2000 with ratios of 10 levels from 5:1 to 50:1. To evaluate the lesion detectability, the images were graded with 5 levels (1 : definitely absent; 2: probably absent; 3: equivocal; 4: probably present; 5: definitely present), and then receiver operating characteristic analysis was performed using the original image as a gold standard. Also to evaluate subjectively the image quality, the images were graded with 5 levels (1 definitely unacceptable; 2: probably unacceptable; 3: equivocal, 4: probably acceptable; 5· definitely acceptable), and then paired t-test was performed. Results : In Digora, CR panoramic and CT images, compressed images up to ratios of 15 : 1 showed nearly the same lesion detectability as original images, and in MR images, compressed images did up to ratios of 25 : 1. In Digora and CR panoramic Images, compressed images up to ratios of 5 : 1 showed little difference between the original and reconstructed images in subjective assessment of image quality In CT images, compressed images did up to ratios of 10: 1 and in MR images up to ratios of 15 : 1 Conclusion : We considered compression ratios up to 5 : 1 in Digora and CR panoramic images, up to 10 : 1 in CT images, up to 15 : 1 in MR images as clinically applicable compression ratios.
Compressed sensing can be used to reduce scan time or to enhance spatial resolution in MRI. It is now recognized that compressed sensing works well in reconstructing magnitude images if the sampling mask and the sparsifying transform are well chosen. Phase images also play important roles in MRI particularly in chemical shift imaging and magnetic resonance electrical impedance tomography (MREIT). We reconstruct MRI phase images using the compressed sensing technique. Through computer simulation and real MRI experiments, we reconstructed phase images using the compressed sensing technique and we compared them with the ones reconstructed by conventional Fourier reconstruction technique. As compared to conventional Fourier reconstruction with the same number of phase encoding steps, compressed sensing shows better performance in terms of mean squared phase error and edge preservation. We expect compressed sensing can be used to reduce the scan time or to enhance spatial resolution of MREIT.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.59-61
/
2018
Highly compressed images typically not only have low resolution, but are also affected by compression artifacts. Performing image super-resolution (SR) directly on highly compressed image would simultaneously magnify the blocking artifacts. In this paper, a SR method based on deep learning is proposed. The method is an end-to-end trainable deep convolutional neural network which performs SR on compressed images so as to reduce compression artifacts and improve image resolution. The proposed network is divided into compression artifacts removal (CAR) part and SR reconstruction part, and the network is trained by three-step training method to optimize training procedure. Experiments on JPEG compressed images with quality factors of 10, 20, and 30 demonstrate the effectiveness of the proposed method on commonly used test images and image sets.
In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.
Block compressed sensing (BCS) is widely used in image sampling and is an efficient, effective technique. Through the use of BCS, an image can be simultaneously compressed and encrypted. In this paper, a novel reversible data hiding (RDH) method is proposed to embed additional data into BCS images. The proposed method is the first RDH method of its kind for BCS images. Results demonstrate that our approach performs better compared with other state-of-the-art RDH methods on encrypted images.
Image resizing is to change an image size by upsampling or downsampling of a digital image. Most still images and video frames are given in a compressed domain on digital media. Image resizing of a compressed image can be performed in a spatial domain via decompression or recompression. In general, resizing of a compressed image in a compressed domain is much faster than that in a spatial domain. In this paper, we propose an approach to resize images in the integer discrete cosine transform (DCT) domain, which exploits the multiplication-convolution property of DCT.
Purpose : To determine the proper image compression method and ratio without image quality degradation in intraoral digital radiographic images, comparing the discrete cosine transform (DCT)-based JPEG with the wavelet-based JPEG 2000 algorithm. Materials and Methods : Thirty extracted sound teeth and thirty extracted teeth with occlusal caries were used for this study. Twenty plaster blocks were made with three teeth each. They were radiographically exposed using CDR sensors (Schick Inc., Long Island, USA). Digital images were compressed to JPEG format, using Adobe Photoshop v.7.0 and JPEG 2000 format using Jasper program with compression ratios of 5 : 1,9 : 1, 14 : 1,28 : 1 each. To evaluate the lesion detectability, receiver operating characteristic (ROC) analysis was performed by the three oral and maxillofacial radiologists. To evaluate the image quality, all the compressed images were assessed subjectively using 5 grades, in comparison to the original uncompressed images. Results: Compressed images up to compression ratio of 14 : 1 in JPEG and 28 : 1 in JPEG 2000 showed nearly the same the lesion detectability as the original images. In the subjective assessment of image quality, images up to compression ratio of 9 : 1 in JPEG and 14 : 1 in JPEG 2000 showed minute mean paired differences from the original Images. Conclusion : The results showed that the clinically acceptable compression ratios were up to 9 : 1 for JPEG and 14 : 1 for JPEG 2000. The wavelet-based JPEG 2000 is a better compression method, comparing to DCT-based JPEG for intraoral digital radiographic images.
In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.520-524
/
2009
In compressed color images, colors are usually represented by luminance and chrominance (YCbCr) components. Considering characteristics of human vision system, chrominance (CbCr) components are generally represented more coarsely than luminance component. Aiming at possible recovery of chrominance components, we propose a model-based chrominance estimation algorithm where color images are modeled by a Markov random field (MRF). A simple MRF model is here used whose local conditional probability density function (pdf) for a color vector of a pixel is a Gaussian pdf depending on color vectors of its neighboring pixels. Chrominance components of a pixel are estimated by maximizing the conditional pdf given its luminance component and its neighboring color vectors. Experimental results show that the proposed chrominance estimation algorithm is effective for quality improvement of compressed color images such as JPEG and JPEG2000.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.6
/
pp.2005-2021
/
2014
This paper proposes a novel image authentication scheme, aiming at tampering detection for block truncation coding (BTC) compressed image. The authentication code is generated by using the random number generator with a seed, and the size of the authentication code is based on the user's requirement, with each BTC-compressed image block being used to carry the authentication code using the data hiding method. In the proposed scheme, to obtain a high-quality embedded image, a reference table is used when the authentication code is embedded. The experimental results demonstrate that the proposed scheme achieves high-quality embedded images and guarantees the capability of tamper detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.