• Title/Summary/Keyword: Compound motion

Search Result 34, Processing Time 0.025 seconds

A site-specific CFD study of passing ship effects on multiple moored ships

  • Chen, Hamn-Ching;Chen, Chia-Rong;Huang, Erick T.
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-77
    • /
    • 2019
  • A local-analytic-based Navier-Stokes solver has been employed in conjunction with a compound ocean structure motion analysis program for time-domain simulation of passing ship effects induced by multiple post-Panamax class ships in the exact condition of a real waterway. The exact seabed bathymetry was reproduced to the utmost precision attainable using the NOAA geophysical database for Virginia Beach, NOAA nautical charts for Hampton Roads and Norfolk harbor, and echo sounding data for the navigation channel and waterfront facilities. A parametric study consists of 112 simulation cases with various combinations of ship lanes, ship speeds, ship heading (inbound or outbound), channel depths, drift angles, and passing ship coupling (in head-on or overtaking encounters) were carried out for two waterfront facilities at NAVSTA Norfolk and Craney Island Fuel Terminal. The present paper provides detailed parametric study results at both locations to investigate the site-specific passing ship effects on the motion responses of ships moored at nearby piers.

Design of Multifunctional Compound Joint Medical Equipment for Continuous Passive Motion (다기능 복합관절 연속수동운동 의료기기 설계)

  • Lee, Kang Won;Yang, Oh;Lee, Chang Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.126-131
    • /
    • 2022
  • The number of joint disease patients is increasing every year. Currently, the most CPM(Continuous Passive Motion) equipment uses expensive imported equipment, and one CPM equipment is designed to be used only in one joint, medical personnel or hospitals who are the main users of the medical equipment need to have several types of CPMs for joint rehabilitation. To solve this problem, this paper designed a multifunctional joint medical equipment that enables rehabilitation of knee, shoulder, and elbow joints in one CPM equipment and includes general, intensive, and adaptive exercise functions for effective treatment according to the patient's condition. The patient's condition was diagnosed using a load cell and a current sensor. In this paper, effective rehabilitation methods were presented and high reliability and precision of medical equipment was confirmed through experiments using potentiometer, encoder, and PI controller.

Relationship of Follow-through Movements to Target Accuracy in Compound Archers (컴파운드 양궁의 팔로우 스루 동작과 사격 정확도의 상관관계)

  • Junkyung Song;Kitae Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.34-44
    • /
    • 2024
  • Objective: This study aimed to investigate how the movements occurring during the follow-through phase after releasing an arrow among elite compound archers, are associated with the arrow impact points on the target. Method: Nine elite archers performed consecutive compound archery shooting under conditions identical to actual competitions using their own bows and equipment. Motion capture system and force platform were utilized to record the changes in joint positions and center of pressure, respectively. Principal component analysis was employed to identify the patterns in which multidimensional joint positions and COP changes were organized with horizontal and vertical coordinates of arrow impact points. Subsequently, correlation analysis quantified the relationship between individual variables and the coordinates of arrow impacts on the target. Results: We found a common organizational pattern in which the two axes of the impact point coordinates were grouped into the first two principal components. The movements of the upper and lower limbs following release exhibited opposite patterns in the anterior-posterior axis, with significant correlations observed between the arrow impact points of the horizontal axis and the left shoulder, right elbow, left hip, and both knees. Additionally, the lateral movements induced by the reaction force upon arrow release showed significant associations with the vertical coordinates of the impact points. Particularly, the correlations between the movements of the left shoulder and elbow, as well as the bilateral hip and right knee, were consistently observed among all participants. Conclusion: These findings implied that the post-release movements could significantly influence the trajectory and impact points of the arrows in compound archery. We suggest that a consistent and controlled movement during the follow-through phase may be more beneficial for optimizing shooting accuracy and precision rather than minimizing movements.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

Energy and Safety Efficient LED Street-light Control System Based on Ubiquitous Sensor Network (USN 기반의 에너지 및 안전성 효율적인 LED 가로등 제어 시스템)

  • Cho, Myeon-gyun;Kim, Shik;Yang, Woo Suk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • LEDs are becoming the most suitable candidate replacing traditional fluorescent street-light lamps because of its energy efficiency and high brightness. Furthermore, most countries are urging to pursue energy savings in conjunction with IT and sensor network. In order to conserve energy of LED lamp and ensure the safety of pedestrian, we propose a new smart control method for LED light system based on USN using compound sensors, such as illuminance, motion, temperature and humidity sensor. An elaborate simulation shows that the proposed system with a smart control based switching can reduce the energy by 40%, compared to the previous street-light system with a fixed time based switching.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.

A Multi-dimensional Structure for User Resistance with the Determinants of Innovative Product Use on Virtual Reality (가상현실 환경에서의 다차원적 혁신저항 구조와 혁신 제품 사용의 결정요소)

  • Park, Hyun-jung;Shin, Kyung-shik;Choi, Jaewon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.2
    • /
    • pp.97-119
    • /
    • 2016
  • Motion-sensing interface enhances the sense of reality of user experience in virtual reality context. This study analyzes the innovation resistance and adoption structure for Leap Motion, which provides a motion-sensing function, primarily considering the theory of perceived risk. Previous research regarding innovation resistance and adoption mainly addressed the resultant aspects of perceived risk, or the impact of perceived value on the adoption intention. This study synthetically reviews previous studies from a multi-dimensional view considering both resistance- and adoption-perspective. To do so, we identified important antecedents that affect perceived risk and value, and we analyzed the compound dynamics of perceived risk and value towards innovation resistance. As a result, we found that the antecedents included in the existent acceptance models from adoption-perspective can help reduce the level of perceived risk, and that higher perceived value leads to lower innovation resistance. Additionally, trialability can rather foster the perceived risk.

The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part (복심곡선 레일이상마모 발생 저감 사례)

  • Kim, Wan-Sool
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF

Deuterium-labeling Toward Robust Function of Organic Molecules: Enhanced Photo-stability of Partially Deuterated 1', 3', 3'-Trimethyl-6-nitrospiro[2H-1- benzopyran-2, 2'-indoline]

  • Kawanishi, Yuji;Inoue, Kyoko;Ohta, Shin-Ichi;Miyazawa, Akira
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.64-66
    • /
    • 2014
  • Synthesis of a deuterium-labeled derivative of nitrospirobenzopyran (NSP), one of representative photochromic compounds, has been described. Four deuteriums were successfully introduced on 1-methyl and ${\alpha}$-methyne relative to spiro-carbon in the title compound with more than 95atom%D purity. Main photodegraded products of NSP were two oxindoles in acetonitrile, and additional products were formed in poly(isobutyl-methacrylate) films possibly due to restricted molecular motion in polymer matrix. Quantitative HPLC analysis revealed that partial introduction of deuterium to NSP brought a noticeable isotope effect, recognizable enhancement in photo-resistivity of NSP, i.e.,8.3% in solutions and 29% in polymeric films.