• Title/Summary/Keyword: Compound Layer

Search Result 689, Processing Time 0.022 seconds

Study on the Fatigue Behavior of Ion-Nitrided SW3 Coil Spring (이온 窒化된 SW3코일 스프링의 疲勞擧動에 관한 硏究)

  • 염영하;장성대
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.355-360
    • /
    • 1983
  • This paper deals with fatigue behavior of ion-nitrided coil spring. It is found that fatigue limit can be significantly increased by ion-nitriding. Ion-nitribed specimen which is treated at 550.deg. C for 5 hours improves in the fatigue limit by 30 percent in comparison with that of non-nitrided specimen. On the other hand, the value of spring constant K has nothing to do with nitriding time and temperature in this experimental range. Besides fatigue behavior, the following effects are discussed such as compound layer, diffusion layer, hardness distribution and their relations.

A Study on the Graded Ni-SiC Composite Coating by Electrodeposition (전해석출에 의한 단계적 Ni-SiC 복합코팅층 제조공정에 관한연)

  • 김선규
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.5
    • /
    • pp.347-354
    • /
    • 1997
  • Composite plating is a method of co-depositing fine particles of metallic, non-metallic compound or polymers in the plated layer to improve material properties such as were-resistance, lubrication, or corrosion resistance. Graded Ni-Sic composite coating were produced in this research. Prior to produce Graded Ni-SiC composite coatings, effects of particle size, particle content, pH of electrolyte, temperature, current density, stirring rate on the amount of SiC deposited in the Ni layer were investigated. By manipulating current density and plating time properties of these coating were evaluated by micro-indentation hardness test.

  • PDF

High-temperature oxidation of Ti3(Al,Si)C2 nano-laminated compounds in air

  • Lee, Hwa-Shin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • The compound, Ti3(Al,Si)C2, was synthesized by hot pressing a powder mixture of TiCX, Al and Si. Its oxidation at 900 and 1000 oC in air for up to 50 h resulted in the formation of rutile-TiO2, -Al2O3 and amorphous SiO2. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen was transported inwards to form the inner mixed layer.

  • PDF

$Ge_1Se_1Te_2$/As layer에 Ag 박막을 추가 삽입한 구조의 전기적 스위칭 특성

  • Nam, Gi-Hyeon;Jeong, Won-Guk;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.156-156
    • /
    • 2010
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2$/As only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this esperiment in order to solve that problem by doping-As with Ag layer.

  • PDF

Studies on Chemical Structure Determination of Polygonatum sibiricum Extracts(I) (황정(黃精) 추출물의 화학구조 결정에 관한 연구(I))

  • 신동수;윤중호;박주희;권기락;안철진;주우홍;강진호;문병호
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 1999
  • Biologically active compounds in Polygonatum sibiricum were extracted using organic solvents as hexane, CHCl$_3$, n-butanol corresponding each component. Compound I was purified from hexane layer and the chemical structure of compound I was characterized using 1H-NMR, 13C-NMR, DEPT135, COSY, HMQC, HMBC spectrum and MS-spectrum. Consequently, the chemical structure of compound I was determined as 9,12-(9E,l2E)-octade cadienoic acid.

  • PDF

Studies on Chemical Structure Determination of Polygonatum sibiricum Extracts(II) (황정(黃精) 추출물의 화학구조 결정에 관한 연구(II))

  • 신동수;김흥재;조수동;권기락;안철진;주우홍;강진호;문병호
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.212-215
    • /
    • 1999
  • Biologically active compounds in Polygonatum sibiricum were extracted using organic solvents as hexane, CHC1$_3$, n-butanol corresponding each component. Compound II was purified from hexane layer and the chemical structure of compound II was characterized using IH-nmr, 13C-nmr, DEPT135, COSY, HMQC, HMBC spectrum and MS-spectrum. Consequently, the chemical structure of compound II was determined as 2-Hydroxy-3-(9,12-(9E,12E)-Octadecadienoyloxy) propanoic acid.

  • PDF

A Manganese Coordination Polymer and a Palladium Molecular Compound of 3-Pyridinepropionic acid (HL): [MnL2(H2O)2] and trans-[Pd(HL)2Cl2]

  • Im, Seo Young;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2947-2952
    • /
    • 2013
  • Three coordination polymers, [$ML_2(H_2O)_2$] (M = Co (1), Ni (2), Mn (3)), were prepared from metal acetates ($M(CH_3COO)_2{\cdot}4H_2O$) and 3-pyridinepropionic acid ($HL=(3-py)-CH_2CH_2COOH$) by solvent-layer methods. By contrast, a discrete molecular compound, trans-[$Pd(HL)_2Cl_2$] (4), was synthesized by replacing benzonitrile (PhCN) ligands in trans-[$Pd(PhCN)_2Cl_2$] with HL under microwave-heating conditions. Compounds 1-3 have a 2D framework, and compound 4 contains a square-planar Pd metal.

Metal-Organic Vapor Phase Epitaxy : A Review II. Process and charactristics (MOVPE 단결정층 성장법 II. MOVPE공정 및 특징)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 1990
  • Metal-Organic Vapor Phase Epitaxy (MOVPE) is an epitaxial process utilizaing ane or more of organometallice as reactnte to grow compound semicond semiconductror layers. MOVPE is basically a cold wall process in which reactants are delivered without reacting with each other to the heated substrate where reactants are thermally decomposed to from compound semiconductors through chemical reaction. Since reactants are delivered as gas phase and the formation of the single crystal compunds depends on the thermal decomposition of the reactants, details of MOVPE relies on the hydrodynamics and pyroltsis and chemical reation of reactants inside on reaction chamber. It has been demonstrated that MOVPE is capable of growing virtually all of the III-V, II-VI and IV-VI compound semiconductrs, fabricating ultrathin epilayers, for ming abrupt hetrointerfaces with monolayer transition width, and is suitable for multi-wafer operation yilding a high throghtput. Overiew of reactror componts and layer, characteristics, and status of MOVPE are discussed.

  • PDF

A Study on Coating Adhesion of Hot Rolled Galvanized Iron Manufactured without pickling process (산세생략형 열연 용융아연도금강판의 특성)

  • 최진원;전선호
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • Coating adherance behavior of low carbon steels, produced by POSCO, Korea, was studied in order to study the characteristics of hot rolled galvanized iron(HGI) manufactured without pickling line and the development of its process. Galvanizing experiments were carried out in zinc pot with 0.2wt% Al after hot rolled plates with scale were reduced at $550~750^{\circ}C$ in 10~30% hydrogen gas atmosphere during 60~400seconds. The reduced plates and coated products were examined by SST, XRD, SEM and EPMA on their surfaces and cross sections. Coating layer of HGI manufactured with pickling line was composed of retained scale, Fe-Zn-Al compound, Fe-Zn compound ($\delta_1\;and\;\zeta$ Phase) and pure zinc. It was superior to HGI in coating adhesion. It seems to be due to forming of Fe-Zn-Al compound in interface of matrix and retained porous scale.

  • PDF

Coupling effect of Cu(ENIG)/Sn-Ag-(Cu)/Cu(ENIG) sandwich solder joint (Cu(ENIG)/Sn-Ag-(Cu)/Cu(ENIG) sandwich solder 접합부의 Coupling 효과)

  • Yun Jeong-Won;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.33-35
    • /
    • 2006
  • The interactions between Cu/Sn-Ag-(Cu) and Sn-Ag-(Cu)/Ni interfacial reactions were studied during isothermal aging at $150^{\circ}C$ for up to 1000h using Cu(ENIG)/Sn-3.5Ag-(0.7Cu)/Cu(ENIG) sandwich solder joints. A typical scallop-type Cu-Sn intermetallic compound (IMC) layer formed at the upper Sn-Ag/Cu interface after reflowing, whereas a $(Cu,Ni)_6Sn_5$ IMC layer was observed at the Sn-Ag/ENIG interface. The Cu in the $(Cu,Ni)_6Sn_5$ IMC layer formed on the Ni side was sourced from the dissolution of the opposite Cu metal pad or Cu-Sn IMC layer. When the dissolved Cu arrived at the interface of the Ni pad, the $(Cu,Ni)_6Sn_5$ IMC layer formed on the Ni interface, preventing the Ni pad from reacting with the solder. Although a long isothermal aging treatment was performed at $150^{\circ}C$, no Ni was detected in the Cu-Sn IMC layer formed on the Cu side. Compared to the single Sn-Ag/ENIG solder joint, the formation of the $(Cu,Ni)_6Sn_5$ IMC layer of the Cu/sn-Ag/ENIG sandwich joint effectively retarded the Ni consumption from the electroless Ni-P layer.

  • PDF