• Title/Summary/Keyword: Composition modulated

Search Result 35, Processing Time 0.02 seconds

Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application (조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Kim, Ye-Tae;Im, Su-Jin;Garner, John;Fu, Yourong;Park, Ki-Nam;Park, Jeong-Sook;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.

Inactivation of Brain myo-Inositol Monophosphate Phosphatase by Pyridoxal-5'-Phosphate

  • Kim, Dae-Won;Hong, Joung-Woo;Eum, Won-Sik;Choi, Hee-Soon;Choi, Soo-Hyun;Kim, So-Young;Lee, Byung-Ryong;An, Jae-Jin;Lee, Sun-Hwa;Lee, Seung-Ree;Kwon, Oh-Shin;Kwon, Hyeok-Yil;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Choi, Soo-Young
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Myo-inositol monophosphate phosphatase (IMPP) is a key enzyme in the phosphoinositide cell-signaling system. This study found that incubating the IMPP from a porcine brain with pyridoxal-5'-phosphate (PLP) resulted in a time-dependent enzymatic inactivation. Spectral evidence showed that the inactivation proceeds via the formation of a Schiff's base with the amino groups of the enzyme. After the sodium borohydride reduction of the inactivated enzyme, it was observed that 1.8 mol phosphopyridoxyl residues per mole of the enzyme dimer were incorporated. The substrate, myo-inositol-1-phosphate, protected the enzyme against inactivation by PLP. After tryptic digestion of the enzyme modified with PLP, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. Amino acid sequencing of the peptide identified a portion of the PLP-binding site as being the region containing the sequence L-Q-V-S-Q-Q-E-D-I-T-X, where X indicates that phenylthiohydantoin amino acid could not be assigned. However, the result of amino acid composition of the peptide indicated that the missing residue could be designated as a phosphopyridoxyl lysine. This suggests that the catalytic function of IMPP is modulated by the binding of PLP to a specific lysyl residue at or near its substrate-binding site of the protein.

Development of Irreversible Micro-size Ferromagnetic Structures by Hydrogenation and Electron-beam Lithography (수소화 및 전자빔 사진식각 기술에 의한 비가역적 마이크로 크기의 강자성 구조체 개발)

  • Yun Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.7-12
    • /
    • 2006
  • In this study, we developed irreversible and stable micro-size ferromagnetic structures utilizing hydrogenation and electron-beam lithography processes. The compositionally modulated (CM) Fe-Zr thin films that had average compositions $Fe_XZr_{100-x}$ with $x=65-85\%$ modulation periods of similar to 1 nm, and total thicknesses of similar to 100 m were prepared. The magnetic properties of CM Fe-Zr thin films were measured using a SQUID magnetometer, VSM and B-H loop tracer. After hydrogenation, the CM films exhibited larger magnetic moment increases than similar homogeneous alloy films for all compositions and かey showed largest increase in $Fe_{80}Zr_{20}$ composition. After aging in air at $300^{\circ}K$ the hydrogenated $Fe_{80}Zr_{20}$ CM films showed much larger magnetic moment increases, indicating that they relax to a stable, irreversible, soft magnetic state. The selective hydrogenation through electron-beam lithographed windows were performed after the circle shaped windows were prepared on $Fe_{80}Zr_{20}$ CM films by electron beam lithography. The hydrogenation through electron-beam resist and W lithographic techniques give a $49\%$ magnetic moment increase. This method can be applied to nano scale structures.

Modulation of Intestinal Microbiota by Supplementation of Fermented Kimchi in Rats (발효 김치가 흰쥐의 장내 미생물 형성에 미치는 영향)

  • An, Su Jin;Kim, Jae Young;Kim, In Sung;Adhikari, Bishnu;Yu, Da Yoon;Kim, Jeong A;Kwon, Young Min;Lee, Sang Suk;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.986-995
    • /
    • 2019
  • Intestinal microbiota play a key role in maintaining the host's health, and variety and richness of this microbiota is directly influenced and modulated by the host's diet. Kimchi is a fermented food rich in dietary fibers and lactic acid bacteria (LAB). To investigate the effect of fermented kimchi on the host's response and the composition of intestinal microbiota, 45 male Sprague-Dawley rats six weeks old were divided into three experimental groups that received either a basal diet (CON) or a basal diet supplemented with fermented kimchi (FK) or chitosan-added fermented kimchi (CFK) for four weeks. Body weights and feed intakes were measured weekly, and the intestinal contents were collected aseptically and were used for 16S rRNA gene profiling via pyrosequencing. As compared to the control, FK and CFK groups showed less body weight gain, feed efficiency, and blood triglyceride concentration. The diversity of intestinal microbiota was increased in both FK and CFK as compared to the control. At the phylum level, obesity-associated Firmicutes decreased, while leanness-associated Bacteroidetes increased. At the genus-level, the genera that consist of LAB, leanness-associated bacteria, and butyric acid-producing bacteria increased in FK and CFK as compared to the control. The overall results suggest that the consumption of fermented kimchi can reduce obesity and promote the host's health through mechanisms involving the modulation of intestinal microbiota.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.