• Title/Summary/Keyword: Composites Material

Search Result 2,159, Processing Time 0.035 seconds

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

SURFACE HARDNESS OF THE DENTAL COMPOSITE CURED BY LIGHT THAT PENETRATE TOOTH STRUCTURE ACCORDING TO THICKNESS OF TOOTH STRUCTURE, LIGHT INTENSITY AND CURING TIME (치질을 투과한 조사광에 의한 복합레진 중합시 치질의 두께, 광세기 및 조사 시간이 복합레진의 표면 경도에 미치는 영향)

  • Cho, Soo-Kyung;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.128-137
    • /
    • 2005
  • In this study we measured the amount of light energy that was projected through the tooth material and analyzed the degree of polymerization by measuring the surface hardness of composites. For polymerization, Optilux 501 (Demetron, USA) with two types of light guide was used: a 12 mm diameter light guide with 840 nW/$cm^2$ light intensity and a 7 mm diameter turbo light guide with 1100 nW/$cm^2$. Specimens were divided into three groups according to thickness of penetrating tooth (1 mm, 2 mm, 0 mm). Each group was further divided into four subgroups according to type of light guide and curing time (20 seconds, 40 seconds). Vickers' hardness was measured by using a microhardness tester. In 0 mm and 1 mm penetrating tooth group, which were polymerized by a turbo light guide for 40 seconds, showed the highest hardness values. The specimens from 2 mm penetrating tooth group, which were polymerized for 20 seconds, demonstrated the lowest hardness regardless of the types of light guides (p < 0.05). The results of this study suggest that, when projecting tooth material over a specified thickness, the increase of polymerization will be limited even if light intensity or curing time is increased.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

FILLER LEACHING FROM NANOFILLER-CONTAINED COMPOSITE RESIN IN VARIOUS MEDIA (수종의 저장 용액에서 나노필러를 함유한 복합레진의 필러의 용출량에 관한 연구)

  • Yang, Kyu-Ho;Heo, Su-Kyung;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • The objective of this study was to measure the leaching of filler (Si, Ba) from nanofiller-contained composites (Palfique Estelite $sigma^{{R}}$ (Tokuyama Dental Corp., Tokyo, Japan), $Z-350^{{R}}$ (3M ESPE, USA), Ceram X duo $E3^{{R}}$, $D3^{{R}}$ (Dentsply, Konstanz, Germany)) under different conditions. The samples used for the study of leachable components were made by insertion of the material into a circular mold, 10 mm in diameter and 3.0 mm high. Each specimen was placed in a disposable polystyrene vial containing 5 mL of distilled water, artificial saliva or 0.1N NaOH and kept in an oven at $37^{\circ}C$. ; water and artificial saliva - 150 days, 0.1N NaOH - 15days. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the amount of Si and Ba in the test solutions. 1. Filler leaching was significantly great in 0.1N NaOH among all samples(p<.0.001). 2. When samples were stored in the distilled water, Estelite showed the lowest amount of Si leaching. When samples were stored in the artificial saliva, Z-350 showed the lowest amount of Si leaching. 3. There were significant differences in filler leaching between 3 storage medias and composite resins(p<.0.001). 4. Si and Ba leaching occurred in greater proportion when samples were stored in the artificial saliva than distilled water. 5. There were significant interactions in monthly filler leaching between leaching in artificial saliva and in distilled water, as well as the interaction between storage medium and filler(p<.0001). These results indicate that a continuous filler leaching of nanofiller-contained composite resins was in storing aqueous solutions under over time.

  • PDF

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Optimization Test of Plant-Mineral Composites to Control Nuisance Phytoplankton Aggregates in Eutrophic Reservoir (부영양 저수지의 조류제거를 위한 기능성 천연물질혼합제의 최적화 연구)

  • Lee, Ju-Hwan;Kim, Baik-Ho;Moon, Byeong-Cheon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • To optimize the natural chemical agents against nuisance phytoplankton, we examined algal removal activity (ABA) of Plant-Mineral Composite (PMC), which already developed by our teams (Kim et al., 2010), on various conditions. The PMC are consisted of extracted-mixtures with indigenous plants (Camellia sinensis, Quercusacutissima and Castanea crenata) and minerals (Loess, Quartz porphyry, and natural zeolite), and characterized by coagulation and floating of low-density suspended solids. A simple extraction process was adopted, such as drying and grinding of raw material, water-extraction by high temperature-sonication and filtering. All tests were performed in 3 L plastic chambers varying conditions; six different concentrations ($0{\sim}1.0\;mL\;L^{-1}$), six light intensities ($8{\sim}1,400\;{\mu}mol\;m^{-2}s^{-1}$), three temperatures ($10{\sim}30^{\circ}C$), four pHs (7~10), five water depths (10~50 cm), and three different waters dominated by cyanobacteria, diatom, and green algae, respectively. Results indicate that the highest ABA of PMC was seen at $0.05\;mL\;L^{-1}$ in treatment concentrations, where showed a reduction of more than 80% of control phytoplankton biomass, while $1,400\;{\mu}mol\;m^{-2}s^{-1}$ in light intensity (>90%), $20{\sim}30^{\circ}C$ temperature (>60%), 7~9 in pH (>90%), below 50 cm in water depth (>90%), and cyanobacterial dominating waters (>80%), respectively. Over the test, ABA of PMC were more obvious on the algal biomass (chlorophyll-${\alpha}$) than suspended solids, suggesting a selectivity of PMC to particle size or natures. These results suggest that PMC agents can play an important role as natural agents to remove the nuisant algal aggregates or seston of eutrophic lake, where occur cyanobacterial bloom in a shallow shore of lake during warm season.

PROPOSAL OF NEW DENIAL COLOR-SPACE FOR AESTHETIC DENIAL MATERIALS (치과용 심미 수복 재료들의 색상 연구를 통한 새로운 치과용 색체계의 제안)

  • Oh, Yun-Jeong;Park, Su-Jung;Kim, Dong-Jun;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • The purpose of this study is to develope new dental color-space system. Twelve kinds of dental composites and one kind of dental porcelain were used in this study. Disk samples (15 mm in diameter, 4 mm in thickness) of used materials were made and sample's CIE $L^*a^*b^*$ value was measured by Spectrocolorimeter (MiniScan XE plus, Model 4000S, diffuse/$8^{\circ}$ viewing mode, 14.3 mm Port diameters, Hunter Lab USA) The range of measured color distribution was analyzed. All the data were applied in the form of T### which is expression unit in CNU Cons Dental Color Chart. The value of $L^*$ lies between 80.40 and 52.70. The value of $a^*$ are between 10.60 and 3.60 and $b^*$ are between 28.40 and 2.21. The average value of $L^*$ is 67.40, and median value is 67.30. The value of $a^*$ are 2.89 and 2.91 respectively. And for the $b^*$, 14.30 and 13.90 were obtained. The data were converted to T### that is the unit count system in CNU-Cons Dental Color Chart. The value of $L^*$ is converted in the first digit of the numbering system. Each unit is 2.0 measured values. The second digit is the value of $a^*$ and is converted new number by 1.0 measured value. For the third digit $b^*$ is replaced and it is 2.0 measured unit apart. T555 was set to the value of $L^*$ ranging from 66.0 to 68.0, value of $a^*$ ranging from 3 to 4 and $b^*$ value ranging from 14 to 16.

Effect of layer combinations with nanocomposite and low-shrinkage composite resins on their color and mechanical properties (나노복합레진과 저수축 복합레진의 복합 층으로 이룬 시편이 색과 물리적 성질에 미치는 영향)

  • Park, Wan-Ky;Choi, An-na;Son, Sung-Ae;Kwon, Yong Hoon;Kang, Eun-Sook;Park, Jeong-Kil
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.129-139
    • /
    • 2017
  • This study investigated the colors and mechanical properties of layered dental composites. Four nanocomposite resins (Aelite LS, Grandio, Tetric EvoCeram, Filtek Z350XT) and a silorane-based composite resin (P90) were used for overlying and underlying materials, respectively, with different thickness combinations. Colors, translucency parameter (TP), flexural and compressive properties were evaluated. All tested specimens had different color coordinates, although all were of A3 shade. Color coordinates and TP values of layered specimens better matched those of the corresponding overlying product as the thickness of the overlying product was increased. High TP values were related with high $b^*$ value differences between specimens (p<0.05). Both flexural strength and modulus, compressive strength and modulus of layered specimens with different thickness combinations were mostly lower than those of the corresponding overlying products, respectively, in their non-layered state.

A Study on the Material and Production Method of Bronze Casting Earthen Mold - Focusing on Earthen Mold Excavated in Dongcheon-dong, Gyungju - (청동주조 토제범(土製范)의 재질과 제작기법 연구 - 경주 동천동 출토 토제범을 중심으로 -)

  • Son, Da-nim;Yang, Hee-jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.108-125
    • /
    • 2013
  • This study examined the actual reconstruction drawing, composite mineral, particle size and property test, fine organic matters, color differences and main ingredients of the earthen mold excavated in Dongcheon-dong, Gyungju. The cross-section of the inner mold and outer mold divides into inside (1st layer) and outside (2nd layer), with organic matters mixed outside. The cross-section has been altered due to heat and form removal agent. X-ray analysis revealed that the layer was made of minerals with high transmissivity and only quartz particles were observed through a polarizing microscope. The inside of cross-section in SEM observation identified enlarged air gap, with crack developed in the center, but no changes observed on the outside. The particle size of the composites is almost the same for the inner mold and outer mold and is silt clay loam. The ratio between silt clay and silt clay loam was about 2.7:1 and 2.9:1 respectively. In the property test, the density and absorption rate of inner mold and outer mold were similar, but porosity was different, with inner mold of 27.36% and outer mold of 31.09%. The color difference of cross-section seems to have been caused by the spread of soot on the 1st layer surface for removal of form or by the covering of ink to protect the 1st layer. Composite mineral analysis revealed the same composition for the inner mold and outer mold, except for the magnetite that was detected in the inner mold alone. As for the main ingredient analysis, the average content of $SiO_2$ was 71.64% and that of $Al_2O_3$ was 14.59%. As for the sub-ingredients, $Fe_2O_3$ was 4.51%, $K_2O$ 3.06%, $Na_2O$, MgO, CaO, $TiO_2$, $P_2O_5$ and MnO was less than 2%.