• 제목/요약/키워드: Composite theory

검색결과 1,594건 처리시간 0.028초

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;Hai-Bo Liu
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.649-658
    • /
    • 2023
  • Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구 (Crashworthy behaviour of cellular polymer under constant impact energy)

  • 정광영;전성식
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.27-32
    • /
    • 2009
  • 본 연구에서는 충돌속도가 다르지만, 총 충돌에너지는 동일하게 유지한 상태에서 충돌을 가했을 때 발포 고분자의 응력-변형률 관계와 충돌에너지 흡수 특성에 관하여 고찰하였다. 이는 충돌시 관성과 변형률 속도에 변화를 주어 재료의 반응거동 및 특성을 파악하기 위함이다. 두가지 다른 밀도(64 $kg/m^3$, 89 $kg/m^3$)를 갖는 발포고분자시편에 대한 준정적시험과 충돌시험이 수행되었다. 또한 Sherwood-Frost 모델과 임펄스 모멘텀 이론의 두가지가 연성된 방정식을이용하여 발포고분자의 구성방정식으로 제안하였다.\ 제안된 구성방정식을 이용하여, 응력변형률 선도를 구하고, 충돌시험결과와 비교하여, 본 구성방정식이 우수하게 결과를 예측할 수 있는 것으로 나타났다.

On nonlinear deflection analysis and dynamic response of sandwich plates based on a numerical method

  • Yong Huang;Zengshui Liu;Shihan Ma;Sining Li;Rui Yu
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.79-90
    • /
    • 2023
  • Nonlinear forced vibration properties of three-layered plates containing graphene platelets (GPL) filled skins and an auxetic core have been inquired within the present paper. Owning reduced weight as well as reduced stiffness, rectangle-shaped auxetic cores have been frequently made from novel techniques such as additive manufacturing. Here, the rectangle shape core is amplified via the graphene-filled layers knowing that the layers possess uniform and linear graphene gradations. The rectangle shape core has the equivalent material specifications pursuant to relative density value. The sandwich plate is formulated pursuant to Kirchhoff plate theory while a numerical trend has been represented to discretize the plate equations. Next, an analytical trend has been performed to establish the deflection-frequency plots. Large deflections, core density and GPL amplification have showed remarkable impacts on dynamic response of three-layered plates.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Design of intelligent estimation of composite fluid-filled shell for three layered active control structure

  • Ghamkhar, Madiha;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Naz, Muhammad Yasin;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제29권2호
    • /
    • pp.117-126
    • /
    • 2022
  • The vibrational characteristic of three-layered cylindrical shell (CS) submerged in fluid with the ring support has been studied. The inner and outer layer is supposed to construct by isotropic layer. The composition of central layer is of functionally graded material type. Acoustic Wave condition has been utilized to present the impact of fluid. The central layer of cylindrical shell (CS) varies by volume fraction law that has been expressed in terms of polynomial. The main shell frequency equation has been obtained by theory of Love's shell and Rayleigh-Ritz technique. The oscillation of natural frequency has been examined under a variety of end conditions. The dependence of axial model has been executed with the help of characteristic beam function. The natural frequencies (NFs) of functionally graded material (FGM) shell have been observed of cylindrical shell along the shell axial direction. Different physical parameters has been used to examine the vibration characteristics due to the effect of volume fraction law. MATLAB software has been used to get result.

Computational thermal stability and critical temperature buckling of nanosystem

  • Chengda Zhang;Haifeng Hu;Qiang Ma;Ning Wang
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.575-590
    • /
    • 2023
  • Many of small-scale devices should be designed to tolerate high temperature changes. In the present study, the states of buckling and stability of nano-scale cylindrical shell structure integrated with piezoelectric layer under various thermal and electrical external loadings are scrutinized. In this regard, a multi-layer composite shell reinforced with graphene nano-platelets (GNP) having different patterns of layer configurations is modeled. An outer layer of piezoelectric material receiving external voltage is also attached to the cylindrical shell for the aim of observing the effects of voltage on the thermal buckling condition. The cylindrical shell is mathematically modeled with first-order shear deformation theory (FSDT). Linear elasticity relationship with constant thermal expansion coefficient is used to extract the relationship between stress and strain components. Moreover, minimum virtual work, including the work of the piezoelectric layer, is engaged to derive equations of motion. The derived equations are solved using numerical method to find out the effects of temperature and external voltage on the buckling stability of the shell structure. It is revealed that the boundary condition, external voltage and geometrical parameter of the shell structure have notable effects on the temperature rise required for initiating instability in the cylindrical shell structure.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.