• 제목/요약/키워드: Composite theory

검색결과 1,605건 처리시간 0.03초

저속 충격시 고차이론을 이용한 복합재료 판의 동적 특성 (Dynamic Charateristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.42-48
    • /
    • 1997
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higher order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. The results compared with previous investigations showed good agreement. The effect of ply sequence and ply angle on the contact force is also studied.

  • PDF

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론 (Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load)

  • 오진호;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

적층복합평판을 위한 고차해석이론 (A Higher-Order Theory for Laminated Composite Plates)

  • 신용석
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.65-76
    • /
    • 1994
  • A higher-oder laminated plate theory including the effect of transverse shear deformation is developed to calculate the gross response and the detailed stress distribution. The theory satisfies the continuity condition of transverse shear stress, and accounts for parabolic variation of the transverse shear stresses through the thickness of each layer. Exact closed-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and a simple higher-order theory solutions. The results of the present work exhibit acceptable accuracy when compared to the three-dimensional elasticity solutions.

형상기억합금 작동기로 작동되는 복합재 보의 형상변형 (Morphing of Composite Beam actuated by SMA Actuator)

  • 김상헌;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2004
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory effect concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite beam are considered as simple morphing structural components which are based on large deformable 2D composite beam theory. Numerical results of fully coupled SMA-composite structures are presented.

  • PDF

잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석 (Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation)

  • 구남서;우성충
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.

Continuous and discontinuous contact problem for a layered composite resting on simple supports

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.17-34
    • /
    • 2001
  • The frictionless contact problem for a layered composite which consists of two elastic layers having different elastic constants and heights resting on two simple supports is considered. The external load is applied to the layered composite through a rigid stamp. For values of the resultant compressive force P acting on the stamp vertically which are less than a critical value $P_{cr}$ and for small flexibility of the layered composite, the continuous contact along the layer - the layer and the stamp - the layered composite is maintained. However, if the flexibility of the layered composite increases and if tensile tractions are not allowed on the interface, for P > $P_{cr}$, a separation may be occurred between the stamp and the layered composite or two elastic layers interface along a certain finite region. The problem is formulated and solved for both cases by using Theory of Elasticity and Integral Transform Technique. Numerical results for $P_{cr}$, separation initiation distance, contact stresses, distances determining the separation area, and the vertical displacement in the separation zone between two elastic layers are given.

연속합성형 교량의 전단연결재 설계에 관한 연구 (A Study on the Design of Shear Connector of Continuous Composite Bridge)

  • 장승필;강상규;심창수
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.351-362
    • /
    • 1997
  • 중. 소규모의 교량 설계시, 그가 가지고 있는 여러 가지 장점 때문에 연속 합성형 교량 형식을 채택하는 것이 점차 보편화되고 있는 실정이다. 그러나 콘크리트 슬래브에 프리스트레스를 가하지 않는 경우에는 교량 중앙 지점부의 부모맨트로 인하여 발생하는 콘크리트 슬래브의 균열을 설계시에 고려해야 한다. 이 논문에서는 기존에 제시된 두 가지 전단연결재 설계 방법에 대하여 탄.소성 유한요소해석법으로 비교 검토하였다. 그리고 부분합성이론을 소개하고 이 이론에 의한 이론적 엄밀해를 유도하였다. 합성정도에 따른 단순합성보와 연속합성보의 거동을 해석결과와 실험결과의 비교 분석을 통하여 부분합성이론을 강합성형교의 설계와 시공에 적용할 경우의 장단점을 검토하였다.

  • PDF

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.