• 제목/요약/키워드: Composite theory

검색결과 1,605건 처리시간 0.03초

건설공사의 Constructability 이론과 적용사례에 관한 연구 - 일본의 사례연구를 중심으로 - (A Study on the theory and cases of Constructability for Building Projects -With Case Study Application in Japan-)

  • 김진호;임남기
    • 한국건축시공학회지
    • /
    • 제2권2호
    • /
    • pp.157-164
    • /
    • 2002
  • In this study, attempts to analyze the case study of production design were carried out through: 1) exploration of the factors influencing the interface between architectural and production design phases; 2)application of precast technologies. Building design and construction planning in Japan may be characterized by ample use of Production Design which extends over the whole projects phases. Taking a composite construction system for apartment buildings which allow for alternative combination of different technologies as a case study object, three projects have been chosen to analyze actual process of determining product sub-system and their specification. And the expectancies of this paper are that it can be used as efficient data for improvement of system to systematize Constructability(Buildability) in korea.

굽힘모드하에서의 코팅크랙킹의 분석 I : 이론 (A Study on the Coating Cracking on a Substrate in Bending I : Theory)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • 제13권3호
    • /
    • pp.38-47
    • /
    • 2000
  • 기재위에 입혀진 코팅에서 발생하는 크랙킹 현상을 파괴역학을 이용해서 분석하였다. 코팅/기재 구조에서 굽힘모드시 발생하는 코팅크랙킹을 변분법을 이용하여 분석하였으며, 본 연구에서 유도된 변위에너지 방출량을 통해 기재위에 입혀진 코팅층에서 크랙이 확장되는 것을 예측할 수 있다. 본 연구를 통해 얻어진 코팅의 임계 변위에너지 방출량은 재료의 고유성질이며 코팅크랙킹의 보다 근본적인 의미를 제공할 수 있다.

  • PDF

변형률 속도가 고려된 발포 폴리프로필렌의 구성방정식 (A Constitutive Equation Including Strain Rate Effect for the Expanded Polypropylene)

  • 김한국;전성식
    • Composites Research
    • /
    • 제27권4호
    • /
    • pp.130-134
    • /
    • 2014
  • 본 논문에서는 Kim 등[7]이 제시한 4가지의 다른 밀도를 갖는 원통형 시험편으로한 EPP(Expanded polypropylene)의 준정적(Quasi-static test) 및 충격 시험(Impact test) DB를 바탕으로 Jeong 등[12]이 제시한 폴리우레탄(Polyurethane)에 대한 구성방정식을 EPP 폼에 대하여 다시 정의 하여 충격량-운동량 이론을 접목시켜 새로운 구성방정식을 제안하기위한 DB 구축을 목표로 하였다.

A STUDY ON IMPACT CHARACTERISTICS OF THE STACKING SEQUENCES IN CFRP COMPOSITES SUBJECTED TO FALLING-WEIGHT IMPACT LOADING

  • Im, K.H.;Park, N.S.;Kim, Y.N.;Yang, I.Y.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.203-211
    • /
    • 2003
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP (Carbon-fiber reinforced plastics) laminate plates based on considerations of stress wave propagation theory, which were converted to measurements of load and displacement verses time. The delamination area of impacted specimens for the different ply orientations was measured with an ultrasonic C-scanner to determine the correlation between impact energy and delamination area. The energy absorbed by a quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy of a hybrid specimen embedding GFRP (Glass-fiber reinforced plastics) layer was higher than that of normal specimens. Also, a falling weight impact tester was built to evaluate the characteristics and impact strength of CFRPs.

펄스 레이저 홀로그래픽 간섭계를 이용한 평판의 탄성파 전파 특성에 관한 연구 (A Study on the Characteristics of Elastic Wave Propagation in Plates Using Pulse Laser Holographic Interferometry)

  • 이기백;나종문;김정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.106-112
    • /
    • 1996
  • In this paper, the propagation of elastic wave generated by loading impact to plates made of isotropic or anisotropic material was studied. And the influence of boundary conditions(free or clamped edge) upon the reflection of elastic wave of isotropic plate such as aluminum plate showed circular interferometric fringe pattern, whereas that of anisotropic plate such as epoxy composite laminates showed elliptical one. And the transverse displacement curves obtained from experiment and theory for both plates agreed well. Also, the waves reflected from the boundary edges showed much differences according to the boundary condition of edges.

  • PDF

생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션 (Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper)

  • 장상동;김흥수;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석 (Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System)

  • 이준용;최낙준;최영도
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.111-130
    • /
    • 2014
  • The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.