• Title/Summary/Keyword: Composite rotor blades

Search Result 59, Processing Time 0.023 seconds

A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method (유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Cho, Jin-Yeon;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with solid, thin-walled and compound cross-sections. The weighted-modulus method is introduced to determine the laminated composite material properties. The shear center and the torsion constant for any given section are calculated according to the Trefftz' definition and the St. Venant torsion theory, respectively. The singular value problem of cross-section stiffness properties faced during the section analysis has been solved by performing an eigenvalue analysis to remove the rigid body mode. Numerical results showing the accuracy of the program obtained for stiffness, offset and inertia properties are compared in this analysis. The current analysis results are validated with those obtained by commercial software and published data available in the literature and a good correlation has generally been achieved through a series of validation study.

Design and Fabrication of Coaxial Rotorcraft-typed Micro Air Vehicle for Indoor Surveillance and Reconnaissance (실내감시정찰용 동축반전 헬리콥터형 미세비행체 설계 및 제작)

  • Byun, Young-Seop;Shin, Dong-Hwan;An, Jin-Ung;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1388-1396
    • /
    • 2011
  • This paper is focused on the procedure of the development of a micro air vehicle which has vertical take-off and landing capability for indoor reconnaissance mission. Trade studies on mission feasibility led to the proposal of a coaxial rotorcraft configuration as the platform. The survey to provide a guide for preliminary design were conducted based on commercial off-the-shelf platform, and the rotor performance was estimated by the simple momentum theory. To determine the initial size of the micro air vehicle, the modified conventional fuel balance method was applied to adopt for electric powered vehicle, and the sizing problem was optimized with the sequential quadratic programming method using MATLAB. The designed rotor blades were fabricated with high strength carbon composite material and integrated with the platform. The developed coaxial rotorcraft micro air vehicle shows stable handling quality with manual flight test in indoor situation.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Stress Analysis of Composite Rotor Blade with Sandwich Structure for Medium Class HAWT (좌굴 및 비선형성을 고려한 중형 수평축 풍력터빈용 샌드위치 복합재 회전날개의 설계 개선에 관한 연구)

  • 공창덕;오동우;방조혁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1998
  • The exhaustion of fossil fuels and serious environmental pollution put the concern about non-po llution energy into the world. On the developments of technology, wind energy has been spotlighted as a non-pollution energy in many countries. This study has carried out the aerodynamic and structural design procedure of the lightweight composite rotor blades with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The previous design, which is shell-spar structure, is redesigned to shell-spar- sandwich structure for light weight. Large deformation problem from light weight is examined by non-linear analysis. Local buckling occurred under lower stress than failure stress. The buckling analysis is accomplished to confirm the safety of the composite blade. The stress analysis around pin hole joint part at hub is carried out and it is confirmed that the pin hole is not failed. The results show that the resonance of redesigned blade does not happen in operation range.

  • PDF

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

Study on Determination Principal Direction for Composite Rotor Blades (복합재료회전익의 주축계 결정화에 관한 연구)

  • 유용석;이종범;정경렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.354-359
    • /
    • 1995
  • 회전익의 소재로 복합재료를 선택하게 됨에 따라 헬리콥터의 유지, 보수 및 성능에서 유리하게 되었지만 허브 형태의 간소화로 인하여 해석상의 어려움은 확대 되었다고 할 수 있을 것이다. 따라서 회전익의 단면특성은 더욱 중요한 의미를 갖게 되었다. 회전익의 단면특성을 결정하기 위해서 우선적으로 각 방향운동의 연성항을 소거하는 것이 계산상 유리하고 따라서 관성주축방향을 결정하는 것이 중요하다. 그러나 회전익의 익형이 대칭형이 아니고 복합한 재료로 구성되어 있을 뿐 아니라 효율의 극대화를 위하여 축방향을 따라 비틀림을 부여하고 있기 때문에 관성주축의 방향을 결정하는데 많은 어려움이 존재한다. 따라서 본 연구에서는 실제 회전익을 그 연구 대상으로 회전익 단면의 등가강성행렬을 추출하고 외팔보의 공학이론과 회전행렬을 이용하는 방법으로 관성주축방향을 결정하는 방법을 제시하였다. 해석방법의 타당성을 확보하기 위하여 엄밀해를 알고 있는 간단해 단면을 갖는 외팔보를 이용하여 검증하였다. 이러한 방법은 관성주축방향을 결정하는 새로운 프로그램의 개발이라는 부담을 최소화 하였을 뿐 아니라, 해석방법 자체가 가지는 간편성으로 인하여 많은 시간과 노력을 줄일수 있을 것으로 기대된다.

  • PDF

A Study of Performance Analysis for a Steam Turbine Blade (증기터빈 날개의 성능해석에 대한 연구)

  • Chung, Kyung-Nam;Kim, Yang-Ik;Sung, Ju-Heon;Chung, In-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.119-124
    • /
    • 2004
  • In this study, a rotor blade of a Curtis turbine is investigated. Bezier curve is generally used to define the profile of turbine blades. However, this curve gives a feature of global control, which is not proper to a supersonic impulse turbine blade. Thus, a blade design method is developed by using B-spline curve so that local control is possible to obtain an optimized blade section. To design a Curtis turbine blade section systematically, the blade section has been changed by varying three design parameters using central composite design method. Flow analyses have been carried out for the blade sections, and the effects of design parameters are evaluated.

  • PDF

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

Computation of Energy Release Rates for Slender Beam through Recovery Analysis and Virtual Crack Closure Technique (차원 복원해석과 가상균열닫힘 기법을 이용한 종방향 균열을 가진 세장비가 큰 보의 에너지 해방률 계산)

  • Jang, Jun Hwan;Koo, Hoi-Min;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, computation results of reducible modeling, stress recovery and energy release rate were compared with the results of VABS, Virtual Crack Closure Technique. The result of stress recovery analysis for 1-D model including the stiffness matrix is compared with stress results of three-dimensional 3-D FEM. Energy release rate of composite beam with longitudinal cracks is calculated and compare verifications of numerical analysis results of 3-D FEM and VABS. The procedure of calculating energy release rate through dimensional reduction and stress recovery is intended to be efficient and be utilized in the life-cycle of high-altitude uav's wing, wind blades and tilt rotor blade.