• 제목/요약/키워드: Composite quantum dot

검색결과 11건 처리시간 0.025초

나노 양자점 결합을 이용한 살모넬라 식중독균 검출 (Detection of Pathogenic Salmonella with a Composite Quantum Dot)

  • 김기영;양길모;김용훈;모창연;박샛별
    • Journal of Biosystems Engineering
    • /
    • 제35권6호
    • /
    • pp.458-463
    • /
    • 2010
  • It is required to develop rapid methods to identify pathogenic Salmonella in food products for protecting and maintaining safety of the public health from Salmonellosis. The objective of the present study was to explore feasibility of the nanotechnology to detect pathogenic Salmonella rapidly in various samples. Sensitivity of the a composite quantum dot to detect Salmonella typhimurium in samples were evaluated. For selective detection of Salmonella, anti-Salmonella polycolonal antibody was utilized to capture and stain Salmonella. Quantum dots were attached onto Salmonella in the samples and produced fluorescent light. Fluorescence response of the composite quantum dot was measured with a commercial fluorescence meter. The fluorescence signal starts to increase with the samples in which higher concentration of the cells were contained. The sensitivity of the sensor was $10^6\;CFU/mL$ Salmonella spiked in PBS.

Luminescent Polynorbornene/Quantum Dot Composite Nanorods and Nanotubes Prepared from AAO Membrane Templates

  • Oh, Se-Won;Cho, Young-Hyun;Char, Kook-Heon
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.995-1002
    • /
    • 2009
  • Luminescent polynorbornene (PNB)/quantum dot (CdSe@ZnS; QD) composite nanorods and nanotubes were successfully prepared using anodic aluminum oxide (AAO) membranes of various pore sizes as templates. To protect QDs with high quantum yield from quenching during the phosphoric acid treatment used to remove the AAO templates, chemically stable and optically clear norbornene-maleic anhydride copolymers (P(NB-r-MA)) were employed as a capping agent for QDs. The amine-terminated QDs reacted with maleic anhydride moieties in P(NB-r-MA) to form PNB-grafted QDs. The chemical- and photo-stability of QDs encapsulated with PNB copolymers were investigated by photoluminescence (PL) spectroscopy. By varying the pore size of the AAO templates from 40 to 380 urn, PNB/QD composite nanorods or nanotubes were obtained with a good dispersion of QDs in the PNB matrix.

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee;Su Hyun Park;Gyungsu Byun;Chang-Yeoul Kim
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.226-235
    • /
    • 2024
  • InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성 (Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

AgNWs/Ga-doped ZnO 복합전극 적용 CdSe양자점 기반 투명발광소자 (CdSe Quantum Dot based Transparent Light-emitting Device using Silver Nanowire/Ga-doped ZnO Composite Electrode)

  • 박재홍;김효준;강현우;김종수;정용석
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.6-10
    • /
    • 2020
  • The silver nanowires (AgNWs) were synthesized by the conventional polyol process, which revealed 25 ㎛ and 30 nm of average length and diameter, respectively. The synthesized AgNWs were applied to the CdSe/CdZnS quantum dot (QD) based transparent light-emitting device (LED). The device using a randomly networked AgNWs electrode had some problems such as the high threshold voltage (for operating the device) due to the random pores from the networked AgNWs. As a method of improvement, a composite electrode was formed by overlaying the ZnO:Ga on the AgNWs network. The device used the composite electrode revealed a low threshold voltage (4.4 Vth) and high current density compared to the AgNWs only electrode device. The brightness and current density of the device using composite electrode were 55.57 cd/㎡ and 41.54 mA/㎠ at the operating voltage of 12.8 V, respectively, while the brightness and current density of the device using (single) AgNWs only were 1.71 cd/㎡ and 2.05 mA/㎠ at the same operating voltage. The transmittance of the device revealed 65 % in a range of visible light. Besides the reliability of the devices was confirmed that the device using the composite electrode revealed 2 times longer lifetime than that of the AgNWs only electrode device.

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법 (New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect)

  • 응웬 딩 궁 디엔;조광연;오원춘
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.705-713
    • /
    • 2017
  • 독창적 물질인 $Bi_2WO_6-GO-TiO_2$ 나노복합체를 쉬운 수열법에 의해 성공적으로 합성하였다. 수열반응을 하는 동안, 그래핀 시트 위에 $Bi_2WO_6$$TiO_2$를 도포하였다. 합성한 $Bi_2WO_6-GO-TiO_2$ 복합체형 광촉매는 X-선 회절법(XRD), 주사전자현미경(SEM), 에너지 분산 X-선(EDX) 분석, 투과전자현미경(TEM), 라만분광법, UV-Vis 확산반사 분광법(UV-vis-DRS), 및 X-선 광전자분광기(XPS)에 의하여 특성화하였다. $Bi_2WO_6$ 나노입자는 불규칙한 dark-square block 나노 플페이트 형상을 보였으며, 이산화티탄 나노입자는 퀜텀 도트 사이즈로 그래핀 시트 위 표면을 덮고 있었다. 로다민 비의 분해는 농도감소의 측정과 함께 UV 분광법에 의하여 관찰하였다. 합성된 물질의 광촉매 반응은 Langmuir-Hinshelwood 모델과 띠 이론으로 설명하였다.