• 제목/요약/키워드: Composite ferrite

검색결과 102건 처리시간 0.022초

폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조 (Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process)

  • 유재근;김정석;민병구;성낙일
    • 자원리싸이클링
    • /
    • 제7권4호
    • /
    • pp.64-75
    • /
    • 1998
  • 본 연구의 목적은 분무배소법에 의해 조성과 입도분포가 매우 균일하고 고순도인 Fe 산화물과 Mn 산화물의 복합산화물 또는 Mn 페라이트 분말을 제조하는데 있다. 본 연구에서는 우선 염산 용액에$SiO_2$, P, Al, Ca, Na 등의 불순물들을 다량 함유하고 있는 Fe와 Mn 성분을 정해진 조성으로 용해시킴으로써 분무배소의 원료용액을 제조하였다. Na와 Ca를 제외한 대부분의 불순물들은 원료 산 용액의 pH를 약 3이상으로 유지시킴으로써 공침현상에 의해 효과적으로 제거되었으며 Na와 Ca 성분은 분말제조 후 수세에 의해 제거가 가능하였다. 반면 PVA, resin amine 등의 고분자 응집제들은 불순물 제거에 거의 효과가 없는 것으로 확인되었다. 본 연구에서는 불순물들이 효과적으로 제거된 정제된 산 용액을 노즐을 이용하여 고온의 배소로 내로 분무시킴으로써 Fe 산화물과 Mn 산화물의 복합 산화물 또는 Mn 페라이트 분말을 제조하였다. 이때 생성된 분말들은 매우 균일하게 혼합되어 있었으며, 배소로 내에서의 반응온도가 증가할수록 생성된 분말의 입도는 증가하였다.

  • PDF

(1-x) [0.5PZT-0.25PNN-0.25PZN]- x [Ni0.9Zn0.1Fe2O4] 세라믹스의 압전/자성 성질 및 자기전기적 효과 (Piezoelectric/magnetic Properties and Magnetoelectric Effects in (1-x) [0.5PZT-0.25PNN-0.25PZN] - x [Ni0.9Zn0.1Fe2O4] Particulate Ceramic Composites)

  • 박영권;손세모;류지구;정수태
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.869-874
    • /
    • 2010
  • Magnetoelectric composites with compositions (1-x)[0.5PZT-0.25PNN-0.25PZN](ferroelectric) - x[$(Ni_{0.9}Zn_{0.1})Fe_2O_4$](ferrite) in which x varies as 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared by conventional ceramic process. The presence of two phases (ferroelectric phase with large grain and ferrite phase with small grain) in the particulate ceramic composites was confirmed by XRD, SEM and EDX. The ferroelectric and magnetic properties of the composites were studied by measuring the P-E and M-H hysterisis loop on the composite composition (x=0, 0.1, 0.2, 1), they were strongly affects of the phase content in composite. The magnetoelectric votage was measured as a function of DC magnetic field and the maximum magnetoelectric voltage coefficient of 14 mV/cm Oe was observed in x=0.2(80 mol% ferroelectric and 20 mol% ferrite phase).

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • 제1권4호
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Structural and Magnetic Properties of (CoFe2O4)0.5(Y3Fe5O12)0.5 Powder

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae;Lee, Sung-Ho
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.80-83
    • /
    • 2005
  • Cobalt ferrite and garnet powders were grown using a conventional ceramic method in two different ways for understanding the magnetic interaction between structurally different materials. Structures of these powders were investigated by using an X-ray diffractometer (XRD) and the magnetic interaction between iron ions and the magnetic properties of the powders were measured by a $M\ddot{o}ssbauer$ spectroscopy and a vibrating sample magnetometer (VSM), respectively. The result of the XRD measurement showed that the annealing temperature higher than $1200^{\circ}C$ was necessary to grow a $(CoFe_2O_4)_{0.5}(Y_3Fe_5O_{12})_{0.5}$ powder. $M\ddot{o}ssbauer$ spectra for the powders grown separately and mixed mechanically consisted of sub-spectra of cobalt ferrite and garnet, however, powders annealed together had an extra sub-spectrum, which was related with the magnetic interaction between the grain surface of cobalt ferrite and the one of the garnet. In case of annealing the powders at the temperature large enough to crystallize them, raw chemicals became fine cobalt ferrite and garnet particles at first and then these fine particles were aggregated and formed large grains of ferrite powders. The result of the VSM measurement showed that the powders prepared at $1200^{\circ}C$ had the similar saturation magnetization and the coercivity regardless of the preparation method.

Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites

  • Chakraborty, Himel;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.295-298
    • /
    • 2013
  • Nano-size manganese ferrite reinforced conductive polypyrrole composites reveal a core-shell structure by in situ polymerization, in the presence of dodecyl benzene sulfonic acid as the surfactant and dopant, and iron chloride as the oxidant. The structure and magnetic properties of manganese ferrite nano-fillers were measured, by using X-ray diffraction and vibrating sample magnetometer. The morphology, microstructure, and conductivity of the composite were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and four-wire technique. The microwave-absorbing properties of composites reinforcement dispersed in resin coating with the coating thickness of 1.2 nm were investigated, by using vector network analyzers, in the frequency range of 8~12 GHz. A reflection loss of -8 dB was observed at 10.5 GHz.

공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성 (The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method)

  • 김문석;민의홍;고재귀
    • 한국자기학회지
    • /
    • 제18권3호
    • /
    • pp.120-125
    • /
    • 2008
  • 여러 가지 다른 조성의 NiCoZn ferrite를 공침법으로 제조한 후 소결온도를 변화시켜 NiCoZn ferrite 미분말을 제조하였다. 제조된 미분말의 미세조직, 결정구조 및 전기적 특성을 분석하였고, 복합형 NiCoZn ferrite 전파흡수체를 제작하여 전파흡수 특성을 분석하였다. 합성한 미분말들은 전형적인 NiCoZn spinel 구조를 지니고 있음을 확인하였고, 입자 크기가 평균 40 nm의 나노분말을 가짐을 알 수 있었다. NiCoZn ferrite를 소결온도를 달리하여 제조한 결과, $1250^{\circ}C$에서 소결된 NiCoZn ferrite가 불순물이 적고 초투자율 및 Q 값이 가장 낮게 나왔다. 또한 S-parameter를 측정하여 반사 감쇠율을 계산한 결과 두께 2 mm인 $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ 조성의 시트형 전파흡수체는 6 GHz의 주파수 대역에서 -3.1 dB의 반사 감쇠율을 보여주었다. 이런 측정 결과 6 GHz 이상의 고주파 영역에서 복합 ferrite 전파흡수체로서 응용이 가능할 것으로 사료된다.

A Study on Multi-Layered EM Wave Absorber Using Natural Lacquer as a Binder

  • Choi, Dong-Han;Kim, Dong-Il;Choi, Chang-Mook;Li, Rui
    • 한국항해항만학회지
    • /
    • 제30권9호
    • /
    • pp.767-772
    • /
    • 2006
  • Generally, a silicone rubber and a chlorinated polyethylene(CPE) have been used as a binder for the development of high-performance composite EM(Electro Magnetic) wave absorbers. In this paper, the EM wave absorption performance of natural lacquer, which is newly proposed as a binder was investigated. The prepared MnZn ferrite EM wave absorbers are mixed with natural lacquer showed excellent EM wave absorption characteristics compared with MnZn ferrite EM wave absorbers which are mixed with the conventional binders. MnZn ferrite EM wave absorbers mixed with natural lacquer were prepared and their absorption ability was also investigated The EM wave absorbers are fabricated in different proportions of MnZn, or NiZn ferrite and natural lacquer, and their reflection coefficients are measured. The permittivity and permeability are calculated by using the measured reflection coefficients. The EM wave absorption abilities are calculated according to different thicknesses of the EM wave absorbers.

A Study on Multi-Layered EM Wave Absorber Using Natural Lacquer as a Binder

  • Choi, Dong-Han;Kim, Dong-Il;Choi, Chang-Mook;Li, Rui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.157-161
    • /
    • 2006
  • Generally, a silicone rubber and a chlorinated polyethylene(CPE) have been used as a binder for the development of high-performance composite EM(Electro Magnetic) wave absorbers. In this paper, the EM wave absorption performance of natural lacquer, which is newly proposed as a binder was investigated. The prepared MnZn ferrite EM wave absorbers are mixed with natural lacquer showed excellent EM wave absorption characteristics compared with MnZn ferrite EM wave absorbers which are mixed with the conventional binders. MnZn ferrite EM wave absorbers mixed with natural lacquer were prepared and their absorption ability was also investigated. The EM wave absorbers are fabricated in different proportions of MnZn, or NiZn ferrite and natural lacquer, and their reflection coefficients are measured. The permittivity and permeability are calculated by using the measured reflection coefficients. The EM wave absorption abilities are calculated according to different thicknesses of the EM wave absorbers.

  • PDF

전자기파 흡수용 복합재료의 기계적 강도평가 (Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption)

  • 오정훈;김천곤;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF