DOI QR코드

DOI QR Code

Piezoelectric/magnetic Properties and Magnetoelectric Effects in (1-x) [0.5PZT-0.25PNN-0.25PZN] - x [Ni0.9Zn0.1Fe2O4] Particulate Ceramic Composites

(1-x) [0.5PZT-0.25PNN-0.25PZN]- x [Ni0.9Zn0.1Fe2O4] 세라믹스의 압전/자성 성질 및 자기전기적 효과

  • Park, Young-Kwon (Department of Electronic Engineering, Pukyong National university) ;
  • Son, Se-Mo (Department of Graphic Arts Engineering, Pukyong National university) ;
  • Ryu, Ji-Goo (Department of Electronic Engineering, Pukyong National university) ;
  • Chung, Su-Tae (Department of Electronic Engineering, Pukyong National university)
  • Received : 2010.07.26
  • Accepted : 2010.10.24
  • Published : 2010.11.01

Abstract

Magnetoelectric composites with compositions (1-x)[0.5PZT-0.25PNN-0.25PZN](ferroelectric) - x[$(Ni_{0.9}Zn_{0.1})Fe_2O_4$](ferrite) in which x varies as 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared by conventional ceramic process. The presence of two phases (ferroelectric phase with large grain and ferrite phase with small grain) in the particulate ceramic composites was confirmed by XRD, SEM and EDX. The ferroelectric and magnetic properties of the composites were studied by measuring the P-E and M-H hysterisis loop on the composite composition (x=0, 0.1, 0.2, 1), they were strongly affects of the phase content in composite. The magnetoelectric votage was measured as a function of DC magnetic field and the maximum magnetoelectric voltage coefficient of 14 mV/cm Oe was observed in x=0.2(80 mol% ferroelectric and 20 mol% ferrite phase).

Keywords

References

  1. R. Grossinger, Giap V. Duong, and R. Sato-Turtelli, J MAGN MAGN MATER. 320, 1972-1977 (2008). https://doi.org/10.1016/j.jmmm.2008.02.031
  2. S Narendra Babu, K Srinivas, S V. Suryanarayana and T Bhimasankaram, J. Phys. D: Appl. Phys. 41, 165407(6pp) (2008). https://doi.org/10.1088/0022-3727/41/16/165407
  3. Y. K. Fetisov, K. E. Kamentsev, and A. Y. Ostashchenko, J MAGN MAGN MATER. 272-276, 2064-2066 (2004). https://doi.org/10.1016/j.jmmm.2003.12.835
  4. Rashed Adnan Islam, Dwight Viehland, and Shashank Priya, J. Mater Sci 43, 1497-1500 (2008). https://doi.org/10.1007/s10853-007-2386-z
  5. C. M. Kanamadi, S. R. Kulkarni, B. K. Chougule, Jung Hyun Jeong, Byung Chun Choi, and Young Soo Kang, J. Mater Sci; Mater Electron 20, 632-636 (2009). https://doi.org/10.1007/s10854-008-9777-z
  6. B. K. Bammannavar, G. N. Chavan, L. R. Naik, and B. K. Chougule, Mater. Chem. Phys. 117, 46-50 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.040
  7. Renbing Sun, Bijun Fang, Xinwei Dong, and Junming Liu, J. Mater Sci 44, 5515-5523, (2009). https://doi.org/10.1007/s10853-009-3771-6
  8. Jungho Ryu, Shashank Priya, Kenji Uchino, and Hyoun Ee Kim, J ELECTROCERAM. 8, 107-119, (2002). https://doi.org/10.1023/A:1020599728432
  9. H. B. Kang, Electrical and Electronic Engineering Material, (Chung Moon Gak Press, 1986) pp. 470-540.
  10. S. T. Chung, K. Nagata, and H, Igarashi, Ferroelectrics, Vol. 94, 243-247 (1989). https://doi.org/10.1080/00150198908014259
  11. S. T. Chyng, S. H. Cho, and U. I. Lee, Journal of the Korean Ceramic Society, Vol. 29, No. 3, 183-188, (1992).
  12. S. Narendra Babu, A. Siddeshwar, K. Srinivas, S. V. Suryanarana, and T. Bhimasankaram, J. Mater Sci 44, 3948-3951 (2009). https://doi.org/10.1007/s10853-009-3534-4
  13. Y. J. Li, X. M. Chen, R. Z. Hou, and Y. H. Tang, SOLID STATE COMMUN 137, 120-125 (2006). https://doi.org/10.1016/j.ssc.2005.11.017
  14. Hsin-Kuang Liu, Jin. H. Huang, Chin-Wen Hsieh, and Hsin-Tsung Tu, J. Mater Sci 40, 1979-1985 (2005). https://doi.org/10.1007/s10853-005-1220-8
  15. S. D. Bhame and P. A. Joy, SENSER ACTUAT A-PHYS 137, 256-261 (2007). https://doi.org/10.1016/j.sna.2007.03.016
  16. J. X. Zhang and L. Q. Chen, ACTA MATER 53, 2845-2855 (2005). https://doi.org/10.1016/j.actamat.2005.03.002
  17. G. Srinivasan, V. M. Laletsin, R. Hayes, N. Puddubnaya, E. T. Rasmussen, and D. J. Fekel, SOLID STATE COMMUN 124, 373-378 (2002). https://doi.org/10.1016/S0038-1098(02)00628-2