• 제목/요약/키워드: Composite electrodes

검색결과 266건 처리시간 0.028초

A Study on Highly Efficient Organic Electroluminescent Devices

  • Park, Jae-Hoon;Lee, Yong-Soo;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.19-24
    • /
    • 2003
  • In order to improve the device performances of organic electroluminescent devices (OELDs), the efficiency of carrier injections into the organic layers from electrodes and the balance of injected carrier densities in the emission region are critical factors. Especially, energy barriers, which exist at the interfaces between electrodes and organic layers, interrupt carrier injections, which lead to unbalanced carrier densities. In this study, ${\alpha}-septithiophene$ (${\alpha}$-7T), as a buffer layer, and composite cathode composed of Al and CsF were formed to improve hole and electron injections, respectively. The orientations of ${\alpha}$-7T molecules were adjusted using the simple rubbing method and the mass ratio of CsF was varied from 1 to 10 wt%. Upon investigation of we believe that the 3 wt% mass ratio of CsF and the horizontal orientation of ${\alpha}$-7T molecules are the optimized conditions for achieving better the performance of OELDs. Device with the horizontally oriented 20 nm thick ${\alpha}$-7T layer and composite cathode shows a turn-on voltage of 7V and luminance of 172 cd/$m^2$ at 4 mA/$cm^2$.

적층형 압전 세라믹 액추에이터에 대한 Ag-세라믹 복합소재 전극의 응용 (Application of Ag-Ceramic Composite Electrodes to Piezoelectric Multilayer Ceramic Actuators)

  • 김성훈;이용희;조성열;최문석;이재신;김일원;정순종;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.331-332
    • /
    • 2006
  • Ag-ceramic composite materials were investigated as internal electrodes for multilayer ceramic actuators (MLCA). Ag-ceramic pastes were prepared by adding PZT-based ceramic powders to a Ag patse in a range of 0 to 50 wt.%. PZT/Ag-PZT multilayered laminates were fabricated by tape casting and fired at low temperatures below $950^{\circ}C$. The addition of ceramic into the Ag electrode resulted in a decrease in the thermal expansion mismatch between the electrode and the ceramic sheet. The maximum strain of PZT/Ag-PZT multilayered actuators were $9{\times}10^{-4}$ under an electric field of 2.5MV/m. In conclusion, Ag-PZT composite materials are efficient for low cost piezoelectric MLCAs.

  • PDF

복합재료 전극을 가진 전기활성고분자 구동기의 설계 (Design of an Actuator Using Electro-active Polymer (EAP) Actuator with Composite Electrodes)

  • 김동욱;장승환
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.211-215
    • /
    • 2019
  • 정적인 상태인 체외 환경(in vitro)에서의 세포배양 과정은 실제 생체 내 환경에서의 세포발달과정과는 많은 차이가 존재한다. 따라서, 체내 환경의 정밀한 모사를 위해서는, 기계적인 자극을 세포에 전달하여 줄 수 있는 동적 세포배양장치가 필수적이다. 하지만 기존의 동적 세포배양장치에는 튜브, 펌프, 모터 등의 비교적 복잡한 장치들을 필요로 하였으며, 전달되는 기계적 자극도 단순한 형태였다. 본 연구에서는 단순한 장치로 구동되는 동적 세포배양장치를 위하여 전기활성고분자(EAP) 구동기를 동력원으로 하는 소형 동적 세포배양장치를 설계하였다. 이 장치는 다양한 기계적 자극을 세포에 전달하는 것이 가능하다.

박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능 (Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells)

  • 이유기
    • 한국재료학회지
    • /
    • 제11권4호
    • /
    • pp.283-289
    • /
    • 2001
  • 50/50 vol% LSM-YSZ (La$_{1-x}$Sr$_{x}$MnO$_3$-yttria stabilized zirconia)의 복합공기극이 콜로이드 증착법에 의해 연마된 YSZ 전해질상에 증착되었다. 그 전극 특성은 주사전자현미경, X선회절과 임피던스 분석기에 의해 연구되어졌다. 90$0^{\circ}C$에서 공기/LSM -YSZ/YSZ/Pt/공기 셀에 대해 측정된 전형적인 임피던스 스펙트럼들은 2개의 불완전한 호(depressed arc)로 구성되었다. LSM 전극에 대한 YSZ의 첨가는 전극내의 삼상계(TPB) 영역을 증가시켰으며, 이것이 LSM-YSZ 복합공기극의 비저항을 감소시켰다. 또한 전해질 표면의 불순물 제거와 TPB 길이의 증가를 위한 전해질 표면연마는 공기극의 비저항을 훨씬 더 감소시켰다. LSM-YSZ 공기극의 비저항은 작동온도, 공기극의 조성과 입자크기, 인가전류 및 전해질의 표면거칠기에 의해 큰 영향을 받았다.

  • PDF

Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구 (A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes)

  • 구할본;김종욱
    • 한국전기전자재료학회논문지
    • /
    • 제17권11호
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

손상 감지 모니터링을 위한 탄소섬유 복합재료와 인쇄된 은 전극 사이의 접촉저항 평가 (Evaluation of Contact Resistance between Carbon Fiber/Epoxy Composite Laminate and Printed Silver Electrode for Damage Monitoring)

  • 전은범;;김학성
    • 비파괴검사학회지
    • /
    • 제34권5호
    • /
    • pp.377-383
    • /
    • 2014
  • 위치 감응형 전극 네트워크(addressable conducting network, ACN)는 탄소섬유 복합재료와 전극 사이의 접촉저항을 통해 구조물의 손상 감지가 가능하다. 손상 감지를 위한 위치 감응형 전극 네트워크의 신뢰성을 향상시키기 위해서는 전극과 복합재료 사이의 접촉저항이 최소화되어야 한다. 본 연구에서는 은 나노 전극을 탄소섬유 복합재료 위에 인쇄전자기술을 이용하여 제작하였다. 은 전극이 형성된 복합재료는 은 나노 잉크의 소결온도와 복합재료의 표면거칠기에 따라 제작되었으며, 이에 따른 접촉저항을 측정하였다. 또한, 전자주사현미경(scanning electron microscope, SEM)을 통해 전극과 복합재료 사이의 계면을 관찰하였다. 본 연구를 통해, 은 나노 잉크의 소결온도가 $120^{\circ}C$, 복합재료의 표면거칠기가 0.230a일 때, $0.3664{\Omega}$의 최소 접촉저항을 나타냈다.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가 (Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors)

  • 황혜원;육서연;정민식;이동주
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화 (Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process)

  • 주재현;박찬규
    • 한국환경보건학회지
    • /
    • 제48권3호
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.