• 제목/요약/키워드: Composite discharge capacity

검색결과 123건 처리시간 0.018초

3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상 (Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators)

  • 이범희;함동완;;김정태;유선율
    • 전기화학회지
    • /
    • 제27권3호
    • /
    • pp.88-96
    • /
    • 2024
  • 리튬금속(Li metal)은 높은 비용량과 에너지 밀도, 낮은 표준 전극 전위로 인해 유망한 음극활 물질로 각광받아온 재료이지만, 충·방전 시 발생하는 수지상 결정인 덴드라이트(dendrite)로 인해 안전성 및 수명안정성에 한계가 있었다. 본 연구에서는 나노 파이버(Nano Fiber) 형태의 도전재인 vapor grown carbon fiber (VGCF)와 은(Ag)의 복합체가 코팅된 분리막을 개발하였으며, 해당 분리막이 리튬금속 음극의 전기화학 특성에 미치는 영향을 연구하였다. VGCF와 Ag의 시너지 효과를 확인하기 위하여 표면 처리되지 않은 분리막, VGCF만 단면 코팅 처리된 분리막을 각각 준비하여 Ag-VGCF 분리막과 비교 평가하였다. Bare 분리막의 경우, 초기 충·방전 과정에서 리튬금속 표면이 덴드라이트로 뒤덮인 반면, VGCF 분리막 및 Ag-VGCF 분리막 모두 분리막 표면에 코팅된 전도성 코팅층 내부에 리튬이 석출되는 거동을 보였다. 또한 Ag-VGCF 분리막은 VGCF 분리막 대비 더욱 균일한 형상의 석출 형태를 보였다. 그 결과 Ag-VGCF 분리막은 Bare 분리막 및 VGCF 분리막 대비 향상된 전기화학적 특성을 보였다.

실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계 (Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode)

  • 임은영;이은솔;이진홍
    • 공업화학
    • /
    • 제35권4호
    • /
    • pp.309-315
    • /
    • 2024
  • 실리콘/탄소(SiC) 복합체는 실리콘의 높은 이론 용량과 탄소 소재의 높은 전기 전도성을 동시에 만족할 수 있어 실리콘 기반 음극의 상용화를 위한 새로운 음극 소재로서 주목받고 있다. 그러나 SiC 활물질의 반복적인 부피 변화에 따른 지속적인 전해질 소모와 용량 감소는 여전히 해결되어야 하는 문제로 여겨진다. 이러한 문제를 해결하기 위해 본 연구에서는 열적 가교 반응을 통해 네트워크 구조를 형성하는 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI) 기반의 수분산 폴리우레탄 바인더(HPUD)를 제안한다. 가교된 HPUD (CHPU)는 SiC 음극의 건조 공정 중 간단한 열처리를 통해서 가교제인 triglycidyl isocyanurate (TGIC)의 epoxy 고리 개환 반응을 활용하여 제조되었다. 뛰어난 기계적 특성 및 접착 특성을 가지는 CHPU 바인더를 사용한 SiC 음극은 우수한 율속 및 장기 수명 특성을 나타낼 뿐만 아니라, SiC 음극의 부피 팽창 또한 효과적으로 완화시키는 것으로 확인되었다. 본 연구 결과는 가교 구조를 가지는 환경친화적인 바인더가 다양한 실리콘 기반 음극에 활용될 수 있음을 시사한다.

다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동 (Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes)

  • 전상은
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.394-401
    • /
    • 2022
  • Polyvinylidene chloride-resin(PVDC-resin)와 polyvinylidene fluoride(PVDF)의 두 폴리머 전구체는 열분해 과정을 통해 마이크로 다공성 탄소로 변환되어 되므로 이온 흡/탈착으로 전하를 저장하는 슈퍼커패시터용 전극재료로 유리하다. 더욱이, 두 전구체를 구성하는 여러가지 이종원소들은 탄화 후 작용기를 형성하여 추가적인 전하저장에 기여할 수 있으므로, 탄화 시 생성되는 작용기에 대한 분석은 에너지 저장용 탄소소재를 개발하는데 중요하다. 본 연구에서는 두 폴리머 전구체를 탄화시킨 후 생성된 작용기를 X-선 광전자 분광법(X-ray photoelectron spectroscopy)과 다양한 pH의 전해질에서 탄소 전극의 전기화학 거동 관찰을 통하여 확인하였다. 산성(1 M H2SO4) 전해질에서 측정된 두 탄소 전극의 비전기용량은 생성된 quinone 작용기의 패러데익 충/방전 반응 덕분에 중성 전해질(0.5 M Na2SO4)에서보다 증가하였다. 특히, PVDC-resin으로부터 합성된 탄소는 매우 작은 마이크로 기공이 표면에 형성되어 있어 전해질 이온의 흡착을 어렵게 하므로, PVDF로부터 합성된 탄소 전극에 비해 낮은 용량을 보인다. 염기성 전해질(6 M KOH)에서 두 탄소 전극 모두 3가지 전해질 중 가장 높은 비전기용량이 측정되었는데, 이는 구성하는 전해질 이온들(K+, OH-)이 두 탄소에 형성된 마이크로 기공으로 흡/탈착이 용이하게 일어나는 동시에 패러데익 충/방전 반응으로 추가적인 전하가 저장되었기 때문이다.