• Title/Summary/Keyword: Composite columns

Search Result 749, Processing Time 0.025 seconds

Seismic response estimation of steel buildings with deep columns and PMRF

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel E.;Gaxiola-Camacho, Jose R.;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.471-495
    • /
    • 2014
  • The responses of steel buildings with perimeter moment resisting frames (PMRF) with medium size columns (W14) are estimated and compared with those of buildings with deep columns (W27), which are selected according to two criteria: equivalent resistance and equivalent weight. It is shown that buildings with W27 columns have no problems of lateral torsional, local or shear buckling in panel zone. Whether the response is larger for W14 or W27 columns, depends on the level of deformation, the response parameter and the structural modeling under consideration. Modeling buildings as two-dimensional structures result in an overestimation of the response. For multiple response parameters, the W14 columns produce larger responses for elastic behavior. The axial load on columns may be significantly larger for the buildings with W14 columns. The interstory displacements are always larger for W14 columns, particularly for equivalent weight and plane models, implying that using deep columns helps to reduce interstory displacements. This is particularly important for tall buildings where the design is usually controlled by the drift limit state. The interstory shears in interior gravity frames (GF) are significantly reduced when deep columns are used. This helps to counteract the no conservative effect that results in design practice, when lateral seismic loads are not considered in GF of steel buildings with PMRF. Thus, the behavior of steel buildings with deep columns, in general, may be superior to that of buildings with medium columns, using less weight and representing, therefore, a lower cost.

Behavior of self-compacting recycled concrete filled aluminum tubular columns under concentric compressive load

  • Yasin Onuralp Ozkilic;Emrah Madenci;Walid Mansour;I.A. Sharaky;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.243-260
    • /
    • 2024
  • Thirteen self-compacting recycled concrete filled aluminium tubular (SCRCFAT) columns were tested under concentric compression loads. The effects of the replacement ratio of the recycled concrete aggregate (RCA) and steel fibre (SF) reinforcement on the structural performance of the SCRCFAT columns were studied. A control specimen (C000) was cast with normal concrete without SF to be reference for comparison. Twelve columns were cast using RCA, six columns were cast using concrete incorporating 2% SF while the rest of columns were cast without SF. Failure mode, ductility, ultimate load capacity, axial deformation, ultimate strains, stress-strain response, and stiffness of the SCRCFAT columns were studied. The results showed that, the peak load of tested SCRCFAT columns incorporating 5-100 % RCA without SF reduced by 2.33-11.28 % compared to that of C000. Conversely, the peak load of tested SCRCFAT columns incorporating 5-100% RCA in addition to 2% SF increased by 21.1-40.25%, compared to C000. Consequently, the ultimate axial deformation (Δ) of column C100 (RCA=100% and SF 0%) increased by about 118.9 % compared to C000. The addition of 2% SF to the concrete mix decreased the axial deformation of SCRCFAT columns compared to those cast with 0% SF. Moreover, the stiffness of the columns cast without SF decreased as the RCA % increased. In contrast, the columns stiffness cast with 2% SF increased by 26.28-89.7 % over that of C000. Finally, a theoretical model was proposed to predict the ultimate loads tested SCRCFAT columns and the obtained theoretical results agreed well with the experimental results.

Characteristics of Shear Behavior for Sand-Clay Composite by Triaxial Test (삼축압축시험에 의한 모래-점토 복합시료의 전단거동 특성)

  • Lee, Jin-Soo;Kim, Jae-Il;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • To examine the general features of a sand-clay composite triaxial test by making specimen varying ratios of diameters (dw) of sand columns that are installed on the soft ground as drains to diameters (de) of drain zone so called drainage space ratio (n=de/dw), densities of the granular columns, and strength of soft soils round around. I also conducted a test to research the reinforcement ability and effects of the ground when the granular columns are wrapped with supplementary materials such as geotextile. The results of the triaxial compression test showed that the shear strength increase is much big when the granular columns are wrapped with supplementary materials, while the shear strength increases as the diameter and density of the granular column increase in general. Also the drainage space ratio shows a distinct increase just below 3 and a similar shear behavior to sand is appeared. The pore water pressure coefficient decreases as the drainage space ratio decreases, however, when the drainage space ratio is less than 3~4, it declines significantly as shown in the results of shear behavior.

  • PDF

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups

  • Ke, Xiaojun;Ding, Wen;Liao, Dingguo
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.399-409
    • /
    • 2021
  • The existing method to improve the coordination performance of the inner and outer parts of concrete-encased concrete-filled steel tube (CFST) composite columns by increasing the volume-stirrup ratio causes difficulties in construction due to over-dense stirrups. Thus, this paper proposes an open polygonal composite stirrup with high strength and high ductility CRB600H reinforced rebar, and seventeen specimens were constructed, and their axial compressive performance was tested. The main parameters considered were the volume-stirrup ratio, the steel tube size, the stirrup type and the stirrup strength. The test results indicated: For the specimens restrained by open octagonal composite stirrups, compared with the specimen of 0.5% volume-stirrup ratio, the compressive bearing capacity increased by 14.6%, 15.7% and 21.5% for volume-stirrup ratio of 0.73%, 1.07% and 1.61%, respectively. For the specimens restrained by open composite rectangle stirrups, compared with the specimen of 0.79% volume-stirrup ratio, the compressive bearing capacity increased by 7.5%, 6.1%, and -1.4% for volume-stirrup ratio of 1.12%, 1.58% and 2.24%, respectively. The restraint ability and the bearing capacity of the octagonal composite stirrup are better than other stirrup types. The specimens equipped with open polygonal composite stirrup not only had a higher ductility than those with the traditional closed-loop stirrup, but they also had a higher axial bearing capacity than those with an HPB300 strength grades stirrup. Therefore, the open composite stirrup can be used in practical engineering. A new calculation method was proposed based on the stress-strain models for confined concrete under different restrain conditions, and the predicted value was close to the experimental value.

Strength and ductility of biaxially loaded high strength RC short square columns wrapped with GFRP jackets

  • Hodhod, O.A.;Hassan, W.;Hilal, M.S.;Bahnasawy, H.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.727-745
    • /
    • 2005
  • The present study is an experimental investigation into the behaviour of high strength concrete square short columns subjected to biaxial bending moments and strengthened by GFRP laminates. The main objectives of the study are: to evaluate the improvement in the structural performance of HSC short square columns subjected to small biaxial eccentricity when strengthened by externally applied FRP laminates, and to investigate the optimum arrangement and amount of FRP laminates to achieve potential enhancement in structural performance especially ductility. The parameters considered in this study are: number of FRP layers and arrangement of wraps. The load eccentricity is kept corresponding to e/t = 0.125 in two perpendicular directions to the columns principal axes, and the wraps are applied in single or double layers (partial or full wrapping). In the present work, test results of five full scale concrete columns are presented and discussed. The study has shown that FRP wraps can be used successfully to enhance the ductility of HSC columns subjected to biaxial bending by 300%.

Fire performance curves for unprotected HSS steel columns

  • Shahria Alam, M.;Muntasir Billah, A.H.M.;Quayyum, Shahriar;Ashraf, Mahmud;Rafi, A.N.M.;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.705-724
    • /
    • 2013
  • The behaviour of steel column at elevated temperature is significantly different than that at ambient temperature due to its changes in the mechanical properties with temperature. Reported literature suggests that steel column may become vulnerable when exposed to fire condition, since its strength and capacity decrease rapidly with temperature. The present study aims at investigating the lateral load resistance of non-insulated steel columns under fire exposure through finite element analysis. The studied parameters include moment-rotation behaviour, lateral load-deflection behaviour, stiffness and ductility of columns at different axial load levels. It was observed that when the temperature of the column was increased, there was a significant reduction in the lateral load and moment capacity of the non-insulated steel columns. Moreover, it was noted that the stiffness and ductility of steel columns decreased sharply with the increase in temperature, especially for temperatures above $400^{\circ}C$. In addition, the lateral load capacity and the moment capacity of columns were plotted against fire exposure time, which revealed that in fire conditions, the non-insulated steel columns experience substantial reduction in lateral load resistance within 15 minutes of fire exposure.

Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns

  • Arasaratnam, P.;Sivakumaran, K.S.;Rasmussen, Kim J.R.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.531-555
    • /
    • 2006
  • H-shaped welded steel column members are fabricated by welding together pre-cut flanges and the web. Modern fabricators are increasingly using plasma-cutting technique instead of traditional flame cutting. Different fabrication techniques result in different degrees of geometric imperfections and residual stresses, which can have considerable influence on the strength of steel columns. This paper presents the experimental investigation based temperature profiles, geometric imperfections, and built-in residual stresses in plasma cut-welded H-shaped steel column members and in similar flame cut-welded H-shaped steel columns. Temperature measurements were taken during and immediately after the cutting operations and the welding operations. The geometric imperfections were established at closely spaced grid locations on the original plates, after cutting plates into plate strips, and after welding plate strips into columns. Geometric imperfections associated with plasma cut element and members were found to be less than those of the corresponding elements and members made by flame cutting. The "Method of Section" technique was used to establish the residual stresses in the plate, plate strip, and in the welded columns. Higher residual stress values were observed in flame cut-welded columns. Models for idealized residual stress distributions for plasma cut and flame cut welded sections have been proposed.

Rayleigh-Ritz procedure for determination of the critical load of tapered columns

  • Marques, Liliana;Da Silva, Luis Simoes;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.45-58
    • /
    • 2014
  • EC3 provides several methodologies for the stability verification of members and frames. However, when dealing with the verification of non-uniform members in general, with tapered cross-section, irregular distribution of restraints, non-linear axis, castellated, etc., several difficulties are noted. Because there are yet no guidelines to overcome any of these issues, safety verification is conservative. In recent research from the authors of this paper, an Ayrton-Perry based procedure was proposed for the flexural buckling verification of web-tapered columns. However, in order to apply this procedure, Linear Buckling Analysis (LBA) of the tapered column must be performed for determination of the critical load. Because tapered members should lead to efficient structural solutions, it is therefore of major importance to provide simple and accurate formula for determination of the critical axial force of tapered columns. In this paper, firstly, the fourth order differential equation for non-uniform columns is derived. For the particular case of simply supported web-tapered columns subject to in-plane buckling, the Rayleigh-Ritz method is applied. Finally, and followed by a numerical parametric study, a formula for determination of the critical axial force of simply supported linearly web-tapered columns buckling in plane is proposed leading to differences up to 8% relatively to the LBA model.