• 제목/요약/키워드: Composite Wing

검색결과 129건 처리시간 0.023초

압전섬유작동기를 이용한 형상적응날개 (Morphing wing using Macro Fiber Composite actuator)

  • 나영호;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2005
  • Recently, research on the morphing wing is an interesting issue to develop the capability of the wing such as improving the lift and reduction of drag during the operation of an aircraft by changing the wing shape from one configuration to another. A more efficient weight reduction of the wing using smart or morphing wing concept can be achieved in comparison with the conventional flaps. In this study, it is investigated the behaviors of the morphing wing using Macro Fiber Composite (MFC) actuators. Generally, MFC is the piezocomposite actuator with the rectangular PZT fiber and epoxy matrix, and uses the interdigitated electrode to produce more powerful actuation in the in-plane direction. Furthermore, it can produce the twisting actuation as compared with the traditional PZT actuators. In the formulation, the first-order shear deformation plate theory is used, and finite element method is adopted in the numerical analysis of the model. Results show the characteristics of the static behavior of the morphing wing according to the change of the actuation voltage.

  • PDF

유전자 알고리즘을 이용한 복합재료 곡면날개의 플러터 최적화 (Flutter Optimization of Composite Curved Wing Using Genetic Algorithms)

  • 알렉산더 바비;김동현;이정진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.696-702
    • /
    • 2006
  • Flutter characteristics of composite curved wing were investigated in this study. The efficient and robust system for the flutter optimization of general composite curved wing models has been developed using the coupled computational method based on both the standard genetic algorithm and the micro genetic algorithms. Micro genetic algorithm is used as an alternative method to overcome the relatively poor exploitation characteristics of the standard genetic algorithm. The present results show that the micro genetic algorithm is more efficient in order to find optimized lay-ups for a composite curved wing model. It is found that the flutter stability of curved wing model can be significantly increased using composite materials with proper optimum lamination design when compared to the case of isotropic wing model under the same weight condition.

  • PDF

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • 제4권2호
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

틸트로터 항공기 복합재료 날개의 진동 제어 (Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft)

  • 송오섭
    • 한국항공우주학회지
    • /
    • 제35권6호
    • /
    • pp.509-516
    • /
    • 2007
  • 본 연구에서는 틸트로터 항공기의 날개-로터 시스템의 수학적 모델링과 자유진동 제어에 대하여 고찰하였다. 날개에 부착된 로터는 수직방향에서 수평방향으로 또는 그 반대로 틸팅각을 변경시킬 수 있다. 로터의 틸팅각, 복합재료 날개의 섬유각, 로터의 회전속도를 변수로 하여 자유진동 특성 및 압전재료를 이용한 자유진동 제어 효과에 대하여 고찰하였다. 복합재료 날개는 상자형 박판 보로 모델링 하였으며, 플랩-래그운동 사이의 연성과 인장-비틀림 운동사이의 연성이 발생하는 CUS 구조로 가정하였다. 수치해석 결과와 그에 따른 결론을 도출하였다.

복합재료날개의 적층각에 대한 플러터 특성 연구 (Flutter characteristics of a Composite Wing with Various Ply Angles)

  • 유재한;김동현;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.126-130
    • /
    • 2000
  • In this study, flutter characteristics of a composite wing have been studied for the variation of laminate angles in the subsonic, transonic and supersonic flow regime. The laminate angles are selected by the aspect of engineering practice such as 0, $\pm$45 and 90 degrees. To calculate the unsteady aerodynamics for flutter analysis, the Doublet Lattice Method(DLM) in subsonic flow and the Doublet Point Method(DPM) in supersonic flow are applied in the frequency domain. In transonic flow, transonic small disturbance(TSD) code is used to calculate the nonlinear unsteady aerodynamics in the time domain. Aeroelastic governing equation has been solved by v-g method in the frequency domain and also by Coupled Time-Integration Method(CTIM) in the time domain. from the results of present study, characteristics of free vibration responses and aeroelastic instabilities of a composite wing are presented for the set of various lamination angles in the all flow range.

  • PDF

손상 허용 설계를 적용한 복합재 날개의 정하중 시험 (Static Test of a Composite Wing with Damage Tolerance Design)

  • 박민영
    • 한국항공우주학회지
    • /
    • 제46권6호
    • /
    • pp.471-478
    • /
    • 2018
  • 본 연구에서는 복합재 날개 구조물에 손상허용설계를 적용하고 이를 입증하기 위한 정하중 시험을 수행하였다. 복합재 날개 구조의 정적강도를 입증하기 위하여 5 조건의 설계 제한하중 시험과 3 조건의 설계 극한하중 시험을 수행하였다. 그 다음으로 손상허용 설계를 입증하기 위하여 관련 규정에 따라서 복합재 주익 주요 취약부위에 BVID 10개, Open hole 11개를 생성 후, 설계 극한하중 시험과 파단시험을 실시하였다. 날개 주요 부위의 변위 및 변형률 시험 결과는 구조해석 결과와 비교적 잘 일치하였으며, 파단시험의 최초 파단부위도 최소안전여유를 갖는 부위에서 발생하여 구조해석 모델 및 강도평가 결과가 실제 구조의 정적 거동과 유사함을 확인하였다.

Design, development and ground testing of hingeless elevons for MAV using piezoelectric composite actuators

  • Dwarakanathan, D.;Ramkumar, R.;Raja, S.;Rao, P. Siva Subba
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.303-328
    • /
    • 2015
  • A design methodology is presented to develop the hingeless control surfaces for MAV using adhesively bonded Macro Fiber Composite (MFC) actuators. These actuators have got the capability to deflect the trailing edge surfaces of the wing to attain the required maneuverability, besides achieving the set aerodynamic trim condition. A scheme involving design, analysis, fabrication and testing procedure has been adopted to realize the trailing edge morphing mechanism. The stiffness distribution of the composite MAV wing is tailored such that the induced deflection by piezoelectric actuation is approximately optimized. Through ground testing, the proposed concept has been demonstrated on a typical MAV structure. Electromechanical analysis is performed to evaluate the actuator performance and subsequently aeroelastic and 2D CFD analyses are carried out to see the functional requirements of wing trailing edge surfaces to behave as elevons. Efforts have been made to obtain the performance comparison of conventional control surfaces (elevons) with morphing wing trailing edge surfaces. A significant improvement in lift to drag ratio is noticed with morphed wing configuration in comparison to conventional wing. Further, it has been shown that the morphed wing trailing edge surfaces can be deployed as elevons for aerodynamic trim applications.

키트용 접이식 복합재 날개 개발 (A Development of Pivoting Composite Wing for Mounting Kit)

  • 주영식;전우철;변관화;조창민
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.486-492
    • /
    • 2013
  • The pivoting composite wing is developed for the kit to be mounted on the external stores. The wing has a pivoting structure for the installation to an aircraft and high aspect ratio to increase lift drag ratio. The wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The wing is designed with carbon fiber composite and the structural parts are integrated to reduce cost to manufacture. In order to verify the structural performances, the design load analysis and flight load survey, the static analysis and test, the ground vibration test and flutter analysis are performed. It is shown that the wing has sufficient structural strength and stiffness to satisfy the structural design requirements.

이중 후퇴각을 갖는 복합재 날개의 플러터 특성 (Flutter Characteristics of Double-Swept Composite Wings)

  • 구교남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF