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Flutter Optimization of Composite Curved Wing Using Genetic Algorithms
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ABSTRACT

Flutter characteristics of composite curved wing were investigated in this study. The efficient and robust system for
the flutter optimization of general composite curved wing models has been developed using the coupled computational
method based on both the standard genetic algorithm and the micro genetic algorithms. Micro genetic algorithm is used
as an alternative method to overcome the relatively poor exploitation characteristics of the standard genetic algorithm.
The present results show that the micro genetic algorithm is more efficient in order to find optimized lay-ups for a
composite curved wing model. It is found that the flutter stability of curved wing model can be significantly increased
using composite materials with proper optimum lamination design when compared to the case of isotropic wing model

under the same weight condition.

1. Introduction

In the development of new weapon systems such as
bomb, projectile, guided or unguided missile, primary
emphasis should be placed on the simplicity and
reliability. A weapon will have far greater reliability if it
can be sealed in a container of minimum volume and
geometry. The solution for this problem can be efficient
solved by using a wrap around fin or simply called
spanwise curved wing concept. The curved wing offers a
solution for many geometric constraints and at the same
time can be sized to provide aerodynamic stabilizing
characteristics equal to flat wing stabilizers. Because of
its unique aerodynamic characteristics and geometry
shape, it is also interesting for aerospace research
engineers to investigate the flutter characteristics of the
curved wing model.

This paper has focus on the flutter optimization by
designing the proper lamination lay-up of the composite
curved wing. The composite materials since its invention
have been used widely in engineering especially for
aircraft structures because of its advantage compared to
the conventional engineering materials. Composite
materials have many characteristics that are different
from the conventional engineering materials such as high
specific strength and directional stiffness. Use of all the
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characteristics advantage allows the tailoring of
composite materials to meet a particular structural
requirement. It is well-known that the optimum design of
wing can be achieved by aeroelastic tailoring of
composite wing structures [1-6].

The classical P-k flutter analysis technique and finite
element method for structural dynamic analysis are
simultaneously applied in this current study to effectively
solve the aeroelastic governing equations in the
frequency domain. For the optimization algorithm, the
genetic algorithm is chosen because of its well-known
performance as the robust global search algorithm [7-9].
Since introduce by Holland [10], genetic algorithm has
been used by many researchers as a useful tool for search
and optimization. However genetic algorithm is less
efficient compared with the deterministic methods such
as non-linear conjugate gradient and quasi-Newton
methods in finding the optimized lay-up solution. This
because genetic algorithm is made based on the
stochastic methods. The deterministic methods are
attractive because they are natural extensions of linear
methods. That’s why, in certain application they can be
made to run extremely fast. The benefit of deterministic
methods is that they are extremely efficient at locating
the bottom of the valley, provided they start the search
somewhere inside the valley. This is a great shortcoming
since in many problems locating the valley that contains
the global optima may be a problem as difficult as
locating the global optima itself. We could say that
deterministic methods are poor at ‘exploration’ (locating
the best valley) but are very good at ‘exploitation’ (given
the valley, locating its floor). The stochastic methods, on
the other hand, perform a much more exhaustive search
of the model space but are not as good at exploiting the
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early results of the search. We could say that stochastic
methods such as genetic algorithms are very good at
‘exploration’ but are very poor at ‘exploitation’. An
interesting alternative to overcome this poor exploitation
problem is to use the so-called micro genetic algorithm
[11]. The micro genetic algorithm can improve the
relatively poor exploitation characteristics of the
standard genetic algorithm in finding the optimized lay-
up solution without affecting their strong exploration
capabilities. Finally the general analysis system for
dynamic-flutter optimization has been developed using
coupled computational technique of finite element
method, efficient flutter analysis method and genetic
algorithms. The optimum results for composite curved
wing are also compared with the composite flat wing
model as well as the isotropic model with the same
weight.

2. Theoretical Backgrounds
2.1 Acroelastic Analysis

The aeroelastic equations of motion for an elastic
wing may be formulated in terms of generalized
displacement response vector {g(?)} which is a solution
of the following equation:

[M 1§} +[Ce g} + K Ha ()} = {01, 4,4)} 0y

where ¢ is the physical time, [M,] is the generalized mass
matrix, [Cg] is the generalized damping matrix which is
practically assumed as proportional damping, [K,] is the
generalized stiffness matrix, and [Q] is the vector of
generalized aerodynamic forces.

Assuming the harmonic oscillation for small wing as

{9} = (@ @

Eg. (1) can be converted into eigenvalue problem in the
frequency domain. The eigenvalue problem for classical
flutter equation can be written as follows:

[[Mg 1% +[Cglp+[Kgl-5 PUTLAM K@ =0 )

where p is the eigenvalue defined by p=w(y+i), w is
circular frequency, y is transient decay rate coefficient
(TDRC), and [A4] is the generalized aerodynamic
influence coefficient (GAIC) matrix of complex form as
a function of Mach number M and reduced frequency k,.
The GAIC matrix was calculated using doublet-lattice
method.

The computed aerodynamic forces will be interpolated

into the finite element node points using the surface
spline method that is based on the infinite plate theory.

2.2 Optimization Method

Genetic algorithm is an optimization technique based
on concepts of natural evolution and revolves around
genetic reproduction processes and survival of the fittest
strategies with some randomization or mutation [12-13].
During the evolution, individuals with higher fitness will
have a higher probability to survive and gradually
dominate the population as the individuals with lower
fitness die off. The optimization model used in GA can
be represented by

Maximize F(x)

x € {4(61,02....6,)}

subject to
6; € [0,+30,+45,+60,90]

“

where F(x) is the objective function and is the flutter
dynamic pressure defined by g = %pV} , where V;is the

flutter speed. The ply orientation angles were used as the
variables (x) in the algorithm to find the maximum flutter
dynamic pressure for probable ply orientation angles.

In, this paper the optimization of flutter dynamic
pressure of the composite curved wing structures was did
using two methods of genetic algorithms. First is
standard genetic algorithm (SGA) and second is micro
genetic algorithm (mGA). The standard genetic
algorithm process begins with initial population of

“design variables created at random and represented as a

binary number. The initial population with ply angle sets
is then used in the flutter analysis to calculate the flutter
dynamic pressure and frequency. The population is then
newly evaluated using fitness evaluation, tournament
reproduction, uniform crossover and jump mutation to
create a better population. The tournament selection for
reproduction has been used because this technique has
the advantage of applying significant selection pressure
while avoiding the pitfalls of fitness ranking [14]. The
examples of uniform crossover and jump mutation used
in the algorithm are shown in Table 1. In order to
increase the reliability and search speed of standard
genetic algorithm, the elitism selection and creep
mutation option have been added into the program
algorithm. By using elitism selection, the finest
individual will always reproduce in new generation and
makes the convergence faster. On the other side, the
creep mutation that acts on the decoded individual will
work together with jump mutation which acts on the
coded individual to prohibit converging to local optima.
Figure 1 illustrates the road map of the present coupling
technique between standard genetic algorithm, finite
element method and aeroelastic analysis technique used
in this paper.
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Table 1 Example of Uniform Crossover and Jump

Mutation
. 10001111 0000000
Uniform 3 !
Crossover — _
00110000 00111111
Jump 01011100 - 01011110
mutation

The micro genetic algorithm was employed as an
alternative to overcome the time consuming algorithm
which is a main problem of the standard genetic
algorithm. In using micro genetic algorithm, a small
population (commonly use 5 individuals) is used to find
the global optima. Obviously, the small populations are
unable to maintain diversity for many generations. In
order to avoid this problem, the algorithm will be
restarted whenever the diversity is lost, keeping only the
very best fit individuals. In principle the micro genetic
algorithm are similar to the standard genetic algorithm,
however because the population always restarted if the
diversity is lost, there is no need for jump and creep
mutation.
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Fig. 1 Road map of the standard genetic algorithm with
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3. Results and Discussion

The geometric configurations of a curved wing and a
flat wing model considered here are presented in Fig. 2.
The curved wing model has the exactly same weight.
The only different between them is just the geometrical

shape. Figure 3 shows the corresponding finite element
models for both the flat wing and the curved wing
configurations.

Curved wing
Flat wing
0.6096 m { Y
X

s

Z 0.6098 m

Z

7

= [0.4054 m 0.04054 m
e 3 V

Yy /

NACA 65A010 —

Fig. 2 Configuration of flat and curved wing

Fig. 3 Finite element models of flat and curved wing
structures

The wing is simply assumed as platelike structures for
the purpose of academic research. The root chord of the
wing is fixed in order to impose structural boundary
conditions. Material properties used in the model are
presented in Table 2. In order to achieve strong potential
for the practical application to realistic wing structures,
the numerical algorithm and computational analysis
system is practically designed and can be integrated with
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commercial finite element codes with general purposes.
In this study, structural dynamic analysis of laminated
composite curved and flat wing models have been
conducted using MSC/NASTRAN which is a well-
known and verified commercial finite element program.
The wing structure model is modeled using
quadrilateral (CQUAD4) plate element with PCOMP
entry to impose the composite material properties. The
total number of plies is assumed as 32 and among them
24 inner plies can be changed according to the
computational iteration coupled with the genetic
algorithm. The lamination sequence is practically
assumed as a symmetric lamination of [0/90/45/-
45/...8),...]s. The variable angles of sets are practically
selected based on the combination of 0°, 30°, 45°, 60°,
and 90° ply orientations. Symmetric flow boundary
condition on the x-z plane is assumed for the unsteady
aerodynamic analysis. The flight condition is set-up at
sea-level with the freestream Mach number of 0.7.

Table 2 Material properties of flat and curved wing

Al 6061-T6
E=70GPa u=033 p=2700 kg/m’ 1=2.286mm
T300/5208 Graphite/Epoxy
E;=138 GPa =028
p=1543 kg/m’ tply =0.125 mm
E;=9.7 GPa G>=5.5 GPa

In this paper, four different optimization cases have
been practically considered; two cases using standard
genetic algorithm and the other two cases using micro
genetic algorithm: Curved No Optimization (CNO) and
Flat No Optimization (FNO) are the cases without
conducting optimization (both flat and curved wing using
initial lamination). Curved Optimization (CO-SGA) and
Flat Optimization (FO-SGA) are the cases with
optimization based on standard genetic algorithm.
Curved Optimization (CO-mGA) and Flat Optimization
(FO-mGA) are the cases based on micro genetic
algorithm. In the application of genetic algorithms, the
variable ply angles considered is expressed in binary
number such as: [0]=000, [30]=001, [-30]=010, [45]=011,
{-45]=100, [60]=101, [-60]=110, and [90]=111. The
parameters used in the standard genetic algorithm and
micro genetic algorithm are presented in Table 3.
Numerical computations have been conducted using a
server computer: Intel Pentium-4 3.0 GHz, 2 GB DDR2
RAM and 240 GB HDD. The total run-time of the
converged solution for each case using the standard
genetic algorithm is about 33 hours for 20,000 iterations
but the total run-time using the micro genetic algorithm
is just about 1.67 hours for 1,000 iterations.

Table 3 Parameters used in the standard genetic
algorithm and micro genetic algorithm

Standard Genetic Algorithm

Population size 200

Jump mutation rate | 0.005 | Elitism Yes
Creep mutation rate | 0.01 | Number of children | 1

Micro Genetic Algorithm

Population size 5

Number of children 1

Uniform crossover | 0.5

Uniform crossover | 0.5
Elitism Yes

The convergence history of standard genetic algorithm
and micro genetic algorithm for each case are presented
in Figs. 4 and 5. For the present models the standard
genetic algorithm requires at least 40 generations in oder
to obtain nearly converged maximum solution and micro
genetic algorithm requires at least 50 generations. Micro
genetic algorithm generally requires more generation
number to obtain the convergence result than standard
genetic algorithm, but faster in the total running time.
The result practically shows that the same level of
maximum flutter dynamic pressure for little different
lamination lay-ups can be achieved using the micro
genetic algorithm., In other word, micro genetic
algorithm is more efficient to obtain the convergence
solution and can overcome the time consuming problem
of standard genetic algorithm.
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Fig. 4 Convergence history for flutter optimization
using Standard Genetic Algorithm
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Fig. 5 Convergence history for flutter optimization using
micro Genetic Algorithm

The results for optimum flutter design computations
are summarized in Table 4. It is shown that the optimized
flutter dynamic pressures are extremely higher than the
case of the isotropic model under the condition of the
same structural weight and aerodynamic shape. Flutter
dynamic pressure of the isotropic material case for flat
wing configuration is just 2.35 kPa and for curved wing
is 2.58 kPa. The flutter dynamic pressure of the initial
composite wing models (flat and curved configuration)
are higher than isotropic material models for the same
weight and shape condition. This result indicates the
benefits of composite material properties and
characteristics compared to the isotropic materials. The
flutter dynamic pressure of FO cases (SGA and mGA) is
4.68 times greater than that of the isotropic material
model. The flutter dynamic pressure of CO cases (SGA
and mGA) is 6.37 times greater than its isotropic
material model. This value is 49.8% higher than that of
the FO cases for the given flight condition. The results
presented in Table 4 also show that the flutter dynamic
pressure for curved wing model is slightly greater than
that of the flat wing configuration for isotropic material
and moderately greater for composite material. Even for
the optimization case, the flutter dynamic pressure of
curved wing model is about 1.5 times than that of the flat

wing configuration. The reasonable explanation about
this phenomenon is that the curved wing model has
different  aerodynamic and natural  vibration
characteristics. Thus, the flutter stability of composite
curved wing model can be largely improved.

Table 4 Comparison of flutter dynamic pressures and
flutter frequencies

Max Flutter
Model Case Stacking Sequence Q¢ Freq
(kP2) | (Hz)
Isotropic
Flat wing N/A 2.35 9.54
Isotropic
Curved wing N/A 2.58 9.72
Composite
FNO [0/90/45/-45/...0...]s 65 15.93
(initial 0 = 0/0/0/0/0/0/0/0/0/0/0/0 i ’
lamination)
Composite
CNO [0/90/45/-45/...0...]s
(i_“iﬁi_ll 0 = 0/0/0/0/0/0/0/0/0/0/0/0 715 15.92
lamination)
Composite [0/90/45/-45/...0...]s
FO 0 =-30/45/-45/60/-45/60/ 1 20.07
(5GA) -30/-60/-30/-60/-45/0 )
Composite [0/90/45/-45/...9...]s
Cco 0 =45/45/45/-45/-45/-30/
16.4 X
(8GA) 45/60/-60/-60/-30/30 648 2043
Compeosite [0/90/45/-45/...0...]s
FO 0 =-30/45/-45/45/-30/-45/ i 19.81
(mGA) 60/-30/-45/-45/45/30 ’
Composite [0/90/45/-45/...0...]s
co 0 =45/45/60/-45/-60/45/
16.48 20.62
L (mGA) -45/45/-30/90/30/45
140
——e—— flatiso
120 — - flat initial lamination b,
= —p-=—=— flat optimized lamination Ve
= curved iso //
100 | = -~ curved initial lamination il y.
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Mode Number

Fig. 6 Comparison of natural frequencies between
isotropic and optimized composite models

Figure 6 represents the comparison of natural
frequencies between isotropic and optimized composite
model for both the flat and the curved wing
configurations. The natural frequencies of flat wing
model are averagely higher than that of the composite
wing model.
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Fig. 7 Natural mode shapes for isotropic and
composite models

Figure 7 shows the natural vibration modes for curved
wing and flat wing configuration. The natural mode
shapes “bétween isotropic material and composite
material for flat wing model are similar although the
natural frequencies are different. We can also see the
same result on the curved wing model. The wings (flat
and curved) tend to have bending motion in the first
mode shape and torsion motion in the second mode

shape.
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Fig. 8 Comparison of Q-g and Q-f plots for isotropic and
optimized composite models

Figure 8 shows the comparison of Q-g and Q-f
diagrams between curved wing model and flat wing
configuration. For all models, it can be observed that the
second mode is the dominant flutter model for the
present curved wing and flat wing.

4. Concluding Remarks

The design studies of aeroelastic tailoring were

conducted on the curved and the flat wing configurations.

An efficient and robust analysis system for flutter
optimization of laminated composite structures in
frequency domain has been successfully developed using
efficient computational method based on the genetic
algorithms. Standard genetic algorithm and micro genetic
algorithm are successfully employed in order to optimize
the flutter dynamic pressure. The present results show
that micro genetic algorithm is more efficient to obtain
the maximum flutter dynamic pressure but gives slightly
different optimized lamination lay-ups for the curved and
the flat wing configurations. The flutter stability of the
optimized curved wing configuration, because of its
aerodynamic and structure modes characteristics, is
much higher than the case of the flat wing configuration.
The present results also indicate that flutter stability of

both the curved and the flat wing structures can be
significantly increased using optimized composite
materials under the same weight condition.
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