• Title/Summary/Keyword: Composite Wall

Search Result 565, Processing Time 0.035 seconds

Rights Control for the Exchange and Sharing of IFC Model-based Standard Construction Drawing Information (IFC 모델기반 표준건설도면 정보의 교환 및 공유를 위한 권한제어에 관한 연구)

  • Hong, Kang-Han;Kim, In-Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.286-295
    • /
    • 2008
  • Construction industry, which is a composite industry being performed by organic combination of various tasks, gives birth to a various of information in the stages of planning, designing, and maintenance management. In particular, the drawing information is broad in the scope of use because it contains all information about buildings as wall as bid, materials, contracts. Therefore, the management of drawing information security is one of the most important factors, which determines the success of failure of business. The major findings and result of this study are as follows to control the distributed drawing information in the collaboration environment. 1) Analysis for function and practical use of DRM in the construction industry. 2) Proposal for applications of DRM that can secure IFC model-based drawing information in the collaboration environment. 3) Extraction from additional IFC entities to apply DRM to part 21 physical files 4) Analysis for functions which are necessary in DRM application prototype system and development of the system. 5) Development IFC model-based DRM prototype system.

Electrochemical Determination of 6-Benzylaminopurine (6-BAP) Using a Single-wall Carbon Nanotube-dicetyl Phosphate Film Coated Glassy Carbon Electrode

  • Li, Chunya
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.991-994
    • /
    • 2006
  • Herein, insoluble single-walled carbon nanotube (SWNT) was successfully dispersed into water in the presence of a special kind of surfactant-dicetyl phosphate (DCP), subsequently, a SWNT-DCP composite film coated glassy carbon electrode (GCE) was fabricated. The electrochemical behaviors of 6-benzylaminopurine (6-BAP) at the unmodified GCE and SWNT-DCP modified GCE were examined. It is found that the SWNT-DCP modified GCE remarkably enhances the oxidation peak current of 6-BAP, indicating great potential in the determination of trace level of 6-BAP. Finally, a sensitive and simple voltammetric method with a good linear relationship in the range of ${\times}5.0\;\;10^{-8}\sim 2.5\;{\times}\;10^{-6}$ mol/L, was developed for the determination of 6-BAP. The detection limit is as low as $2.0\;{\times}\;10^{-8}$ mol/L for 3-min accumulation. This newly-proposed method was successfully demonstrated with practical samples.

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

The Planar Orientation of Fibers During Compression Molding of Short-Fiber Reinforced Polymeric Composites (단섬유강화 고분자 복합재료의 압축성형에 있어서 섬유배향에 관한 연구)

  • Kim, Hyuk;Jeon, Sang-Gi;Lee, Dong-Gi;Han, Gil-Yong;Kim, E-Gon
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.34-43
    • /
    • 1996
  • In this study basic equations of fiber orientations is cimpared with experimental results. It is found that fiber orientations of short fiber reinforced polymeric composite under compression molding are governed by slope of flow speed in x-y direction. Fiber orientation angle of mold is also found to increase with closure speed and the compression ratio. At the middle of the mold, the slope of flow speed is larger in x-direction than in y-direction. At the wall of the mold, the shope of flow speed in y-direction occurs due to the effect of friction, hence affects the fiber orientation. The effect of partial flow, which incurs y-direction orientation causes to increase the fiber orientation angle at the fore part of the flow.

  • PDF

Effects of RHS face deformation on the rigidity of beam-column connection

  • Hadianfard, M.A.;Rahnema, H.
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.489-500
    • /
    • 2010
  • The rigid connections of I-beams to Rectangular Hollow Sections (RHS) in steel structures usually behave as semi-rigid connection. This behavior is directly related to the column face deformation. The deformation in the wall of RHS column in the connection zone causes a relative rotation between beam end and column axis, which consequently reduces the rigidity of beam-column connection. In the present paper, the percentages of connection rigidity reduction for serviceability conditions are evaluated by using the finite element analysis. Such percentages for RHS columns without internal stiffeners are considerable, and can be calculated from presented graphs.

Experimental study on reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.517-533
    • /
    • 2014
  • Experimental results of 39 specimens including concrete columns, RC columns, hollow steel tube columns, concrete filled steel tubular (CFT) columns, and reinforced concrete filled steel tubular (RCFT) columns are presented. Based on the experimental results, the load-carrying capacity, confined effect, ductility, and failure mode of test columns are investigated. The effects of the main factors such as width-thickness ratio (the ratio of external diameter and wall thickness for steel tubes), concrete strength, steel tube with or without rib, and arrangement of reinforcing bars on the mechanical characteristics of columns are discussed as well. The differences between CFT and RCFT are compared. As a result, it is thought that strength, rigidity and ductility of RCFT are improved; especially strength and ductility are improved after the peak of load-displacement curve.

Chord bearing capacity in long-span tubular trusses

  • Kozy, B.;Boyle, R.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.103-122
    • /
    • 2006
  • The capacity of tubular truss chords subjected to concentrated reaction forces in the vicinity of the open end (i.e., the bearing region) is not directly treated by existing design specifications; although capacity equations are promulgated for related tubular joint configurations. The lack of direct treatment of bearing capacity in existing design specifications seems to represent an unsatisfactory situation given the fact that connections very often control the design of long-span tubular structures comprised of members with slender cross-sections. The case of the simple-span overhead highway sign truss is studied, in which the bearing reaction is applied near the chord end. The present research is aimed at assessing the validity of adapting existing specifications' capacity equations from related cases so as to be applicable in determining design capacity in tubular truss bearing regions. These modified capacity equations are subsequently used in comparisons with full-scale experimental results obtained from testing carried out at the University of Pittsburgh.

Hole trapping in carbon nanotube-polymer composite organic light emitting diodes

  • Woo, H.S.;Czerw, R.;Carroll, D.L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1047-1052
    • /
    • 2003
  • Controlling carrier transport in light emitting polymers is extremely important for their efficient use in organic opto-electronic devices [1]. Here we show that the interactions between single wall carbon nanotubes (SWNTs) and conjugated polymers can be used to modify the overall mobility of charge carriers within nanotube-polymer nanocomposites. By using a unique, double emitting-organic light emitting diodes (DE-OLEDs) structure. we have characterized the hole transport within electroluminescent nanocomposites (nanotubes in poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene) or PmPV). We have shown using this idea that single devices with color tunability can be fabricated. It is seen that SWNTs in PmPV are responsible for hole trapping, leading to shifts in the emission wavelengths. Our results could lead to improved organic optical amplifiers, semiconducting devices, and displays.

  • PDF

Preliminary study on the Review Project Viability to Rahmen Structure (라멘조 공법의 사업성 검토에 관한 기초연구)

  • Lee, Sung-Ho;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.139-140
    • /
    • 2011
  • The government encourages adoption of Rahmen structure design to ensure efficient management of national resources. However, in comparison with bearing-wall structure, Rahmen structure requires higher unit construction cost and present challenges in terms of securing adequate floor area ratio and floor height. That is why project clients have been disinterested in adoption of Rahmen structure design. Therefore, we have attempted to find factors having influence on decline of project viability for Rahmen structure. This study will be utilized as a basic reference study for promotion of Green Frame design which is a composite PC structure already developed.

  • PDF

Finite element modeling of tubular truss bearings

  • Kozy, B.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.49-70
    • /
    • 2005
  • This paper reports on finite element analysis techniques that may be applied to the study of circular hollow structural sections and related bearing connection geometries. Specifically, a connection detail involving curved steel saddle bearings and a Structural Tee (ST) connected directly to a large-diameter Hollow Structural Section (HSS) truss chord, near its open end, is considered. The modeling is carried out using experimentally verified techniques. It is determined that the primary mechanism of failure involves a flexural collapse of the HSS chord through plastification of the chord wall into a well-defined yield line mechanism; a limit state for which a shell-based finite element model is well-suited to capture. It is also found that classical metal plasticity material models may be somewhat limited in their applicability to steels in fabricated tubular members.