• Title/Summary/Keyword: Composite Stock Price Index

Search Result 77, Processing Time 0.026 seconds

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow (LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로)

  • Jung, Hyunjo;Lee, Jaehwan;Suh, Jihae
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.81-94
    • /
    • 2022
  • Real estate and artworks were considered challenging investment targets for individual investors because of their relatively high average transaction price despite their long investment history. Recently, the so-called fractional investment, generally known as investing in a share of the ownership right for real-life assets, etc., and most investors perceive that they actually own a piece (fraction) of the ownership right through their investments, is gaining popularity. Founded in 2016, Musicow started the first service that allows users to invest in copyright fees related to music distribution. Using the LSTM algorithm, one of the deep learning algorithms, this research predict the price of right to participate in copyright fees traded in Musicow. In addition to variables related to claims such as transfer price, transaction volume of claims, and copyright fees, comprehensive indicators indicating the market conditions for music copyright fees participation, exchange rates reflecting economic conditions, KTB interest rates, and Korea Composite Stock Index were also used as variables. As a result, it was confirmed that the LSTM algorithm accurately predicts the transaction price even in the case of fractional investment which has a relatively low transaction volume.

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

The GARCH-GPD in market risks modeling: An empirical exposition on KOSPI

  • Atsmegiorgis, Cheru;Kim, Jongtae;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1661-1671
    • /
    • 2016
  • Risk analysis is a systematic study of uncertainties and risks we encounter in business, engineering, public policy, and many other areas. Value at Risk (VaR) is one of the most widely used risk measurements in risk management. In this paper, the Korean Composite Stock Price Index data has been utilized to model the VaR employing the classical ARMA (1,1)-GARCH (1,1) models with normal, t, generalized hyperbolic, and generalized pareto distributed errors. The aim of this paper is to compare the performance of each model in estimating the VaR. The performance of models were compared in terms of the number of VaR violations and Kupiec exceedance test. The GARCH-GPD likelihood ratio unconditional test statistic has been found to have the smallest value among the models.

A study of organizational learning as a corporate competency : focusing on the mediate effect between quality management and business performance (기업역량으로서의 조직학습 - 품질경영활동과 기업성과간의 매개적 역할을 중심으로)

  • Oh, Seok-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.1
    • /
    • pp.20-33
    • /
    • 2010
  • This study investigates the relationships of total quality management (TQM), organizational learning (OL) activities and business performance and examines the partial mediation effect of OL activities on business performance in Korean industrial manufacturing setting. Main target sample firms were all manufacturing companies listed in the Korea Composite Stock Price Index (KOSPI) and 206 firms participated. This study theoretically develops a conceptual model with 3 hypotheses regarding how TQM practices influence OL activities and how the OL activities partially mediate between the TQM practices and business performance. To examine these hypotheses, Structural Equation Modeling (SEM) was employed and an alternative model which includes a path between errors of leadership factor and OL construct was developed. The findings are TQM practices cannot directly influence business performance but indirectly impact business performance through OL activities. This study found that OL activities playa role as firms' critical competency to improve business performance.

Analysis of the margin level in the KOSPI200 futures market (KOSPI200 선물 시장의 증거금 수준에 대한 연구)

  • Kim, Jun;Choe, In-Chan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.734-737
    • /
    • 2004
  • When the margin level is set relatively low, margin violation probability increases and the default probability of the futures market rises. On the other hand, if the margin level is set high, the margin violation probability decreases, but the futures market becomes less attractive to hedgers as the investor's opportunity cost increases. In this paper, we investigate whether the movement of KOSPI200(Korea Composite Stock Price Index 200) futures daily prices can be modeled with the extreme value theory. Base on this investigation, we examine the validity of the margin level set by the extreme value theory. Computational results are presented to compare the extreme value distribution and the empirical distribution of margin violation in KOSPI200. Some observations and implications drawn from the computational experiment are also discussed.

  • PDF

A Probabilistic Forecasting System on the Tendency of Variation of Korea Composite Stock Price Index (한국종합주가지수 변동 경향에 대한 확률적 예측 시스템)

  • Kang, Byeong-Woo;Han, Dong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.500-504
    • /
    • 2006
  • 본 논문에서 기술하는 연구는 한국종합주가지수(KOSPI)의 장기적 변동 경향에 대한 확률적 예측 시스템을 제안한다. 제안된 방법론은 이미 단백질 상호작용 예측 시스템과 스트레스 확률 예측 시스템 등에 적용되어 유효성이 입증된 방법으로, 이미 알려진 데이터를 바탕으로 다양한 요인들의 가능한 모든 조합에 대한 경우의 수를 고려한 학습 결과에 기반하여 새로이 주어진 대상의 요인들을 분석해서 학습시 사용된 특정 군(class)에 속할지의 여부를 확률적으로 나타내준다. 이 방법론을 구현하기 위해 실제 과거 주가지수 데이터를 수집하여 CI(Combination Interrelation)행렬을 구현하였으며, 현재 진행중인 검증작업에 대해서도 기술하였다.

  • PDF

A Study about the Correlation between Information on Stock Message Boards and Stock Market Activity (온라인 주식게시판 정보와 주식시장 활동에 관한 상관관계 연구)

  • Kim, Hyun Mo;Yoon, Ho Young;Soh, Ry;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.559-575
    • /
    • 2014
  • Individual investors are increasingly flocking to message boards to seek, clarify, and exchange information. Businesses like Seekingalpha.com and business magazines like Fortune are evaluating, synthesizing, and reporting the comments made on message boards or blogs. In March of 2012, Yahoo! Finance Message Boards recorded 45 million unique visitors per month followed by AOL Money and Finance (19.8 million), and Google Finance (1.6 million) [McIntyre, 2012]. Previous studies in the finance literature suggest that online communities often provide more accurate information than analyst forecasts [Bagnoli et al., 1999; Clarkson et al., 2006]. Some studies empirically show that the volume of posts in online communities have a positive relationship with market activities (e.g., trading volumes) [Antweiler and Frank, 2004; Bagnoli et al., 1999; Das and Chen, 2007; Tumarkin and Whitelaw, 2001]. The findings indicate that information in online communities does impact investors' investment decisions and trading behaviors. However, research explicating the correlation between information on online communities and stock market activities (e.g., trading volume) is still evolving. Thus, it is important to ask whether a volume of posts on online communities influences trading volumes and whether trading volumes also influence these communities. Online stock message boards offer two different types of information, which can be explained using an economic and a psychological perspective. From a purely economic perspective, one would expect that stock message boards would have a beneficial effect, since they provide timely information at a much lower cost [Bagnoli et al., 1999; Clarkson et al., 2006; Birchler and Butler, 2007]. This indicates that information in stock message boards may provide valuable information investors can use to predict stock market activities and thus may use to make better investment decisions. On the other hand, psychological studies have shown that stock message boards may not necessarily make investors more informed. The related literature argues that confirmation bias causes investors to seek other investors with the same opinions on these stock message boards [Chen and Gu, 2009; Park et al., 2013]. For example, investors may want to share their painful investment experiences with others on stock message boards and are relieved to find they are not alone. In this case, the information on these stock message boards mainly reflects past experience or past information and not valuable and predictable information for market activities. This study thus investigates the two roles of stock message boards-providing valuable information to make future investment decisions or sharing past experiences that reflect mainly investors' painful or boastful stories. If stock message boards do provide valuable information for stock investment decisions, then investors will use this information and thereby influence stock market activities (e.g., trading volume). On the contrary, if investors made investment decisions and visit stock message boards later, they will mainly share their past experiences with others. In this case, past activities in the stock market will influence the stock message boards. These arguments indicate that there is a correlation between information posted on stock message boards and stock market activities. The previous literature has examined the impact of stock sentiments or the number of posts on stock market activities (e.g., trading volume, volatility, stock prices). However, the studies related to stock sentiments found it difficult to obtain significant results. It is not easy to identify useful information among the millions of posts, many of which can be just noise. As a result, the overall sentiments of stock message boards often carry little information for future stock movements [Das and Chen, 2001; Antweiler and Frank, 2004]. This study notes that as a dependent variable, trading volume is more reliable for capturing the effect of stock message board activities. The finance literature argues that trading volume is an indicator of stock price movements [Das et al., 2005; Das and Chen, 2007]. In this regard, this study investigates the correlation between a number of posts (information on stock message boards) and trading volume (stock market activity). We collected about 100,000 messages of 40 companies at KOSPI (Korea Composite Stock Price Index) from Paxnet, the most popular Korean online stock message board. The messages we collected were divided into in-trading and after-trading hours to examine the correlation between the numbers of posts and trading volumes in detail. Also we collected the volume of the stock of the 40 companies. The vector regression analysis and the granger causality test, 3SLS analysis were performed on our panel data sets. We found that the number of posts on online stock message boards is positively related to prior stock trade volume. Also, we found that the impact of the number of posts on stock trading volumes is not statistically significant. Also, we empirically showed the correlation between stock trading volumes and the number of posts on stock message boards. The results of this study contribute to the IS and finance literature in that we identified online stock message board's two roles. Also, this study suggests that stock trading managers should carefully monitor information on stock message boards to understand stock market activities in advance.

The Impact of Information on Stock Message Boards on Stock Trading Behaviors of Individual Investors based on Order Imbalance Analysis (온라인 주식게시판 정보가 주식투자자의 거래행태에 미치는 영향)

  • Kim, Hyun Mo;Park, Jae Hong
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.23-38
    • /
    • 2016
  • Previous studies on information systems (IS) and finance suggest that information on stock message boards influence the investment decisions of individual investors. However, how information on online stock message boards influences an individual investor's buy or sell decisions is unclear. To address this research question, we investigate the relationship between a number of posts on stock message boards and order imbalance in stock markets. Order imbalance is defined as the difference between the daily sum of buy-side shares traded and the daily sum of sell-side shares traded. Therefore, order imbalance can suggest the direction of trades and the strength of the direction with trading volumes. In this regard, this study examines how the number of posts (information on stock message boards) influences order imbalance (stock trading behavior). We collected about 46,077 messages of 40 companies on the Korea Composite Stock Price Index from Paxnet, the most popular Korean online stock message board. The messages we collected were divided based on in-trading and after-trading hours to examine the relationship between the numbers of posts and trading volumes. We also collected order imbalance data on individual investors. We then integrated the balanced panel data sets and analyzed them through vector regression. We found that the number of posts on online stock message boards is positively related to prior order imbalance. We believe that our findings contribute to knowledge in IS and finance. Furthermore, this study suggests that investors should carefully monitor information on stock message boards to understand stock market sentiments.

Estimating the Determinants for Transaction Value of B2B (Business-to-Business): A Panel Data Model Approach (패널 데이터모형을 이용한 기업간전자상거래 거래액 결정요인 추정에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Dae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.225-231
    • /
    • 2010
  • Transaction value of business-to-business(B2B) is composed of various factors for groups and time series. In this paper, we use the panel data for finding various variables and using this we analyse the factors that is major influence to transaction value of business-to-business. For analysis we looked at transaction value of business-to-business of 7 groups such as manufacturing industry, electric, gas and piped water industry, construction industry, retail & wholesale trade, traffic industry, publish, image; broad-casting & telecommunication and information service industry, etc. In our analysis we looked at the transaction value of business-to-business during the period from 2005.01 to 2009.12. We examined the data in relation to the transaction value of cyber shopping mall, company bond, composite stock price index, transaction value of credit card, loaned rate of interest in deposit bank, rate of exchange looking at the factors which determine the transaction value of business-to-business, evidence was produced supporting the hypothesis that there is a significant positive relationship between the transaction value of cyber shopping mall, composite stock price index and loaned rate of interest in deposit bank, rate of exchange. The company bond is negative relationship, transaction value of credit card is positive relationship and they are not significant variables in terms of the transaction value of business-to-business.