Purpose - This study aimed to examine the behavior surrounding the Initial Public Offering (IPO) event of firms within the same conglomerate and the impact of under-pricing and Return on Equity(ROE) on a firm's abnormal stock returns. Design/methodology - This study collected data from 166 South Korean Chaebols, consisting of 355 firms distributed as 202 listed on Korea Composite Stock Price Index (KOSPI) and 153 firms listed on Korean Securities Dealers Automated Quotations (KOSDAQ) from 2000 to 2020. The Capital Asset Pricing Model (CAPM) and the multiple regression analysis were hired to analyze the data. Findings - First, we found an adverse price reaction of IPO listing in the same chaebol group, and firms with higher under-pricing affect other firms' stock prices more adversely within the conglomerate. Next, we explored a negatively significant relation between ROE and the chaebol firms' stock returns during IPO events. Research implications - The novelty of this study is there are not many empirical studies on the impact of IPO within a conglomerate. So, the findings of this study contribute to the literature for analyzing stock's abnormal returns within a conglomerate.
Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.329-337
/
2003
Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.
Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.3
no.1
/
pp.7-12
/
2003
In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.320-322
/
2000
본 논문에서 제안한 종합주가지수 "왼쪽어깨" 패턴 검출은 자기 연상 학습 신경망을 사용하였다. 종합주가 지수 데이터에서 머리어깨모형 중 왼쪽 어깨에 해당하는 데이터로 신경망을 학습시킨 후 이를 이용하여 현재 혹은 테스트 데이터를 입력으로 주어 성능을 평가하였다. 결과는 비교적 우수하였다. 패턴 검출에 의한 투자를 하였을 경우 17개월간의 누적 수익률이 132% 였다. 이 기간동안 buy and hold 전략을 사용했을 경우의 수익률은 39% 였다.률은 39% 였다.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1327-1336
/
2017
In this study, the problems in the short term stock market forecasting are analyzed and the feasibility of the ARIMA method and the backpropagation neural network is discussed. Neural network and genetic algorithm in short term stock forecasting is also examined. Since the backpropagation algorithm often falls into the local minima trap, we optimized the backpropagation neural network and established a genetic algorithm based on backpropagation neural network for forecasting model in order to achieve high forecasting accuracy. The experiments adopted the korea composite stock price index series to make prediction and provided corresponding error analysis. The results show that the genetic algorithm based on backpropagation neural network model proposed in this study has a significant improvement in stock price index series forecasting accuracy.
Purpose - Since COVID-19, the government's expansion of liquidity to stimulate the economy has resulted in an increase in private debt and an increase in asset prices of such as real estate and stocks. The recent sharp rise of the US Federal fund rate and tapering by the Fed have led to a fast rise in domestic interest rates, putting a heavy burden on the Korean economy, where the level of household debt is very high. Excessive household debt might have negative effects on the economy, such as shrinking consumption, economic recession, and deepening economic inequality. Therefore, now more than ever, it is necessary to identify the causes of the increase in household debt. Design/methodology/approach - Main methodology is regression analysis. Dependent variable is household loans from depository institutions. Independent variables are consumer price index, unemployment rate, household loan interest rate, housing sales price index, and composite stock price index. The sample periods are from 2017 to May 2022, comprising 72 months of data. The comparative analysis period before and after COVID-19 is from January 2017 to December 2019 for the pre-COVID-19 period, and from Jan 2020 to December 2022 for the post-COVID-19 period. Findings - Looking at the results of the regression analysis for the entire period, it was found that increases in the consumer price index, unemployment rate, and household loan interest rates decrease household loans, while increases in the housing sales price index increase household loans. Research implications or Originality - Household loans of depository institutions are mainly made up of high-credit and high-income borrowers with good repayment ability, so the risk of the financial system is low. As household loans are closely linked to the real estate market, the risk of household loan defaults may increase if real estate prices fall sharply.
Communications for Statistical Applications and Methods
/
v.23
no.3
/
pp.203-213
/
2016
We investigate volatility spillover aspects of realized volatilities (RVs) for the log returns of the Korea Composite Stock Price Index (KOSPI) and the Hang Seng Index (HSI) from 2009-2013. For all RVs, significant long memories and asymmetries are identified. For a model selection, we consider three commonly used time series models as well as three models that incorporate long memory and asymmetry. Taking into account of goodness-of-fit and forecasting ability, Leverage heteroskedastic autoregressive realized volatility (LHAR) model is selected for the given data. The LHAR model finds significant decompositions of the spillover effect from the HSI to the KOSPI into moderate negative daily spillover, positive weekly spillover and positive monthly spillover, and from the KOSPI to the HSI into substantial negative weekly spillover and positive monthly spillover. An interesting result from the analysis is that the daily volatility spillover from the HSI to the KOSPI is significant versus the insignificant daily volatility spillover of the KOSPI to HSI. The daily volatility in Hong Kong affects next day volatility in Korea but the daily volatility in Korea does not affect next day volatility in Hong Kong.
PARK, TAE-SU;KEUM, JONGHAE;KIM, HOISUB;KIM, YOUNG ROCK;MIN, YOUNGHO
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.26
no.1
/
pp.23-48
/
2022
In this paper, we provide predictive models for the market price of fruits, and analyze the performance of each fruit price predictive model. The data used to create the predictive models are fruit price data, weather data, and Korea composite stock price index (KOSPI) data. We collect these data through Open-API for 10 years period from year 2011 to year 2020. Six types of fruit price predictive models are constructed using the LSTM algorithm, a special form of deep learning RNN algorithm, and the performance is measured using the root mean square error. For each model, the data from year 2011 to year 2018 are trained to predict the fruit price in year 2019, and the data from year 2011 to year 2019 are trained to predict the fruit price in year 2020. By comparing the fruit price predictive models of year 2019 and those models of year 2020, the model with excellent efficiency is identified and the best model to provide the service is selected. The model we made will be available in other countries and regions as well.
Journal of the Korea Society of Computer and Information
/
v.16
no.7
/
pp.183-190
/
2011
Loan amount of housing mortgage is composed of various factors. This study paper studies focuses on estimating the determinants of a loan amount of housing mortgage. The region for analysis consist of seven groups, that is, metropolitan city (such as Busan, Daegu, Incheon, Gwangiu, Daejeon, Ulsan.) and Seoul. Analyzing period be formed over a 45 time points(2007. 01.~ 2010. 09). In this paper the dependent variable setting up loan amount of housing mortgage, explanatory(independent) variables are composed of the consumer price index, unemployment rate, average monthly household income per household, expenditure rate of health care, composite stock price index and overdue rate of household loans for commercial bank. In looking at the factors which determine loan amount of housing mortgage, evidence was produced supporting the hypothesis that there is a significant positive relationship between the consumer price index and unemployment rate. The study also produced evidence supporting the view that there is a significant negative relationship between expenditure rate of health care. The study found that average monthly household income per household, expenditure, composite stock price index and overdue rate of household loans for commercial bank were not significant variables. The implications of these findings are discussed for further research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.