• Title/Summary/Keyword: Composite Stock Price Index

Search Result 77, Processing Time 0.023 seconds

Does a Firm's IPO Affect Other Firms in the Same Conglomerate?

  • Bhadra, Madhusmita;Kim, Doyeon
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.3
    • /
    • pp.37-50
    • /
    • 2021
  • Purpose - This study aimed to examine the behavior surrounding the Initial Public Offering (IPO) event of firms within the same conglomerate and the impact of under-pricing and Return on Equity(ROE) on a firm's abnormal stock returns. Design/methodology - This study collected data from 166 South Korean Chaebols, consisting of 355 firms distributed as 202 listed on Korea Composite Stock Price Index (KOSPI) and 153 firms listed on Korean Securities Dealers Automated Quotations (KOSDAQ) from 2000 to 2020. The Capital Asset Pricing Model (CAPM) and the multiple regression analysis were hired to analyze the data. Findings - First, we found an adverse price reaction of IPO listing in the same chaebol group, and firms with higher under-pricing affect other firms' stock prices more adversely within the conglomerate. Next, we explored a negatively significant relation between ROE and the chaebol firms' stock returns during IPO events. Research implications - The novelty of this study is there are not many empirical studies on the impact of IPO within a conglomerate. So, the findings of this study contribute to the literature for analyzing stock's abnormal returns within a conglomerate.

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

Predicting The Direction of The Daily KOSPI Movement Using Neural Networks For ETF Trades (신경회로망을 이용한 일별 KOSPI 이동 방향 예측에 의한 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.

"Left Shoulder" Detection in Korea Composite Stock Price Index Using an Auto-Associative Neural Network and Sign Variables (자기연상학습 신경망과 부호변수를 이용한 종합주가지수)

  • 백진우;조성준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.320-322
    • /
    • 2000
  • 본 논문에서 제안한 종합주가지수 "왼쪽어깨" 패턴 검출은 자기 연상 학습 신경망을 사용하였다. 종합주가 지수 데이터에서 머리어깨모형 중 왼쪽 어깨에 해당하는 데이터로 신경망을 학습시킨 후 이를 이용하여 현재 혹은 테스트 데이터를 입력으로 주어 성능을 평가하였다. 결과는 비교적 우수하였다. 패턴 검출에 의한 투자를 하였을 경우 17개월간의 누적 수익률이 132% 였다. 이 기간동안 buy and hold 전략을 사용했을 경우의 수익률은 39% 였다.률은 39% 였다.

  • PDF

Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model (개선된 유전자 역전파 신경망에 기반한 예측 알고리즘)

  • Yoon, YeoChang;Jo, Na Rae;Lee, Sung Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1327-1336
    • /
    • 2017
  • In this study, the problems in the short term stock market forecasting are analyzed and the feasibility of the ARIMA method and the backpropagation neural network is discussed. Neural network and genetic algorithm in short term stock forecasting is also examined. Since the backpropagation algorithm often falls into the local minima trap, we optimized the backpropagation neural network and established a genetic algorithm based on backpropagation neural network for forecasting model in order to achieve high forecasting accuracy. The experiments adopted the korea composite stock price index series to make prediction and provided corresponding error analysis. The results show that the genetic algorithm based on backpropagation neural network model proposed in this study has a significant improvement in stock price index series forecasting accuracy.

Analysis of Characteristics and Determinants of Household Loans in Korea: Focusing on COVID-19 (국내 가계대출의 특징과 결정요인 분석: COVID-19를 중심으로)

  • Jin-Hee Jang;Jae-Bum Hong;Seung-Doo Choi
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.2
    • /
    • pp.51-61
    • /
    • 2023
  • Purpose - Since COVID-19, the government's expansion of liquidity to stimulate the economy has resulted in an increase in private debt and an increase in asset prices of such as real estate and stocks. The recent sharp rise of the US Federal fund rate and tapering by the Fed have led to a fast rise in domestic interest rates, putting a heavy burden on the Korean economy, where the level of household debt is very high. Excessive household debt might have negative effects on the economy, such as shrinking consumption, economic recession, and deepening economic inequality. Therefore, now more than ever, it is necessary to identify the causes of the increase in household debt. Design/methodology/approach - Main methodology is regression analysis. Dependent variable is household loans from depository institutions. Independent variables are consumer price index, unemployment rate, household loan interest rate, housing sales price index, and composite stock price index. The sample periods are from 2017 to May 2022, comprising 72 months of data. The comparative analysis period before and after COVID-19 is from January 2017 to December 2019 for the pre-COVID-19 period, and from Jan 2020 to December 2022 for the post-COVID-19 period. Findings - Looking at the results of the regression analysis for the entire period, it was found that increases in the consumer price index, unemployment rate, and household loan interest rates decrease household loans, while increases in the housing sales price index increase household loans. Research implications or Originality - Household loans of depository institutions are mainly made up of high-credit and high-income borrowers with good repayment ability, so the risk of the financial system is low. As household loans are closely linked to the real estate market, the risk of household loan defaults may increase if real estate prices fall sharply.

Volatility spillover between the Korean KOSPI and the Hong Kong HSI stock markets

  • Baek, Eun-Ah;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.203-213
    • /
    • 2016
  • We investigate volatility spillover aspects of realized volatilities (RVs) for the log returns of the Korea Composite Stock Price Index (KOSPI) and the Hang Seng Index (HSI) from 2009-2013. For all RVs, significant long memories and asymmetries are identified. For a model selection, we consider three commonly used time series models as well as three models that incorporate long memory and asymmetry. Taking into account of goodness-of-fit and forecasting ability, Leverage heteroskedastic autoregressive realized volatility (LHAR) model is selected for the given data. The LHAR model finds significant decompositions of the spillover effect from the HSI to the KOSPI into moderate negative daily spillover, positive weekly spillover and positive monthly spillover, and from the KOSPI to the HSI into substantial negative weekly spillover and positive monthly spillover. An interesting result from the analysis is that the daily volatility spillover from the HSI to the KOSPI is significant versus the insignificant daily volatility spillover of the KOSPI to HSI. The daily volatility in Hong Kong affects next day volatility in Korea but the daily volatility in Korea does not affect next day volatility in Hong Kong.

PREDICTING KOREAN FRUIT PRICES USING LSTM ALGORITHM

  • PARK, TAE-SU;KEUM, JONGHAE;KIM, HOISUB;KIM, YOUNG ROCK;MIN, YOUNGHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.23-48
    • /
    • 2022
  • In this paper, we provide predictive models for the market price of fruits, and analyze the performance of each fruit price predictive model. The data used to create the predictive models are fruit price data, weather data, and Korea composite stock price index (KOSPI) data. We collect these data through Open-API for 10 years period from year 2011 to year 2020. Six types of fruit price predictive models are constructed using the LSTM algorithm, a special form of deep learning RNN algorithm, and the performance is measured using the root mean square error. For each model, the data from year 2011 to year 2018 are trained to predict the fruit price in year 2019, and the data from year 2011 to year 2019 are trained to predict the fruit price in year 2020. By comparing the fruit price predictive models of year 2019 and those models of year 2020, the model with excellent efficiency is identified and the best model to provide the service is selected. The model we made will be available in other countries and regions as well.

Estimating the Determinants of Loan Amount of Housing Mortgage : A Panel Data Model Approach (주택 담보 가계 대출액 결정요인 추정에 관한 패널 데이터 모형 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.183-190
    • /
    • 2011
  • Loan amount of housing mortgage is composed of various factors. This study paper studies focuses on estimating the determinants of a loan amount of housing mortgage. The region for analysis consist of seven groups, that is, metropolitan city (such as Busan, Daegu, Incheon, Gwangiu, Daejeon, Ulsan.) and Seoul. Analyzing period be formed over a 45 time points(2007. 01.~ 2010. 09). In this paper the dependent variable setting up loan amount of housing mortgage, explanatory(independent) variables are composed of the consumer price index, unemployment rate, average monthly household income per household, expenditure rate of health care, composite stock price index and overdue rate of household loans for commercial bank. In looking at the factors which determine loan amount of housing mortgage, evidence was produced supporting the hypothesis that there is a significant positive relationship between the consumer price index and unemployment rate. The study also produced evidence supporting the view that there is a significant negative relationship between expenditure rate of health care. The study found that average monthly household income per household, expenditure, composite stock price index and overdue rate of household loans for commercial bank were not significant variables. The implications of these findings are discussed for further research.